1-6hit |
Yi-ze LE Yong FENG Da-jiang LIU Bao-hua QIANG
Metric learning aims to generate similarity-preserved low dimensional feature vectors from input images. Most existing supervised deep metric learning methods usually define a carefully-designed loss function to make a constraint on relative position between samples in projected lower dimensional space. In this paper, we propose a novel architecture called Naive Similarity Discriminator (NSD) to learn the distribution of easy samples and predict their probability of being similar. Our purpose lies on encouraging generator network to generate vectors in fitting positions whose similarity can be distinguished by our discriminator. Adequate comparison experiments was performed to demonstrate the ability of our proposed model on retrieval and clustering tasks, with precision within specific radius, normalized mutual information and F1 score as evaluation metrics.
Chunhua QIAN Xiaoyan QIN Hequn QIANG Changyou QIN Minyang LI
The segmentation performance of fresh tea sprouts is inadequate due to the uncontrollable posture. A novel method for Fresh Tea Sprouts Segmentation based on Capsule Network (FTS-SegCaps) is proposed in this paper. The spatial relationship between local parts and whole tea sprout is retained and effectively utilized by a deep encoder-decoder capsule network, which can reduce the effect of tea sprouts with uncontrollable posture. Meanwhile, a patch-based local dynamic routing algorithm is also proposed to solve the parameter explosion problem. The experimental results indicate that the segmented tea sprouts via FTS-SegCaps are almost coincident with the ground truth, and also show that the proposed method has a better performance than the state-of-the-art methods.
Ting WU Yong FENG JiaXing SANG BaoHua QIANG YaNan WANG
Recommender systems (RS) exploit user ratings on items and side information to make personalized recommendations. In order to recommend the right products to users, RS must accurately model the implicit preferences of each user and the properties of each product. In reality, both user preferences and item properties are changing dynamically over time, so treating the historical decisions of a user or the received comments of an item as static is inappropriate. Besides, the review text accompanied with a rating score can help us to understand why a user likes or dislikes an item, so temporal dynamics and text information in reviews are important side information for recommender systems. Moreover, compared with the large number of available items, the number of items a user can buy is very limited, which is called the sparsity problem. In order to solve this problem, utilizing item correlation provides a promising solution. Although famous methods like TimeSVD++, TopicMF and CoFactor partially take temporal dynamics, reviews and correlation into consideration, none of them combine these information together for accurate recommendation. Therefore, in this paper we propose a novel combined model called TmRevCo which is based on matrix factorization. Our model combines the dynamic user factor of TimeSVD++ with the hidden topic of each review text mined by the topic model of TopicMF through a new transformation function. Meanwhile, to support our five-scoring datasets, we use a more appropriate item correlation measure in CoFactor and associate the item factors of CoFactor with that of matrix factorization. Our model comprehensively combines the temporal dynamics, review information and item correlation simultaneously. Experimental results on three real-world datasets show that our proposed model leads to significant improvement compared with the baseline methods.
Chunhua QIAN Mingyang LI Yi REN
Tea sprouts segmentation via machine vision is the core technology of tea automatic picking. A novel method for Tea Sprouts Segmentation based on improved deep convolutional encoder-decoder Network (TS-SegNet) is proposed in this paper. In order to increase the segmentation accuracy and stability, the improvement is carried out by a contrastive-center loss function and skip connections. Therefore, the intra-class compactness and inter-class separability are comprehensively utilized, and the TS-SegNet can obtain more discriminative tea sprouts features. The experimental results indicate that the proposed method leads to good segmentation results, and the segmented tea sprouts are almost coincident with the ground truth.
Meng Ting XIONG Yong FENG Ting WU Jia Xing SHANG Bao Hua QIANG Ya Nan WANG
The traditional recommendation system (RS) can learn the potential personal preferences of users and potential attribute characteristics of items through the rating records between users and items to make recommendations.However, for the new items with no historical rating records,the traditional RS usually suffers from the typical cold start problem. Additional auxiliary information has usually been used in the item cold start recommendation,we further bring temporal dynamics,text and relevance in our models to release item cold start.Two new cold start recommendation models TmTx(Time,Text) and TmTI(Time,Text,Item correlation) proposed to solve the item cold start problem for different cold start scenarios.While well-known methods like TimeSVD++ and CoFactor partially take temporal dynamics,comments,and item correlations into consideration to solve the cold start problem but none of them combines these information together.Two models proposed in this paper fused features such as time,text,and relevance can effectively improve the performance under item cold start.We select the convolutional neural network (CNN) to extract features from item description text which provides the model the ability to deal with cold start items.Both proposed models can effectively improve the performance with item cold start.Experimental results on three real-world data set show that our proposed models lead to significant improvement compared with the baseline methods.
Sunzeng CAI Saijie YAO Kai KANG Zhengming ZHANG Hua QIAN
In a wireless communication system, the nonlinearity of the power amplifier (PA) in the transmitter is a limiting factor of the system performance. To achieve high efficiency, the PA input signal is driven into the nonlinear region. Signals with large peak-to-power ratio (PAPR) suffer uneven distortion where large signals receive additional distortion. Orthogonal linear transformations, such as orthogonal frequency division multiplexing (OFDM) modulation, spread the nonlinear distortion evenly to each data symbol, thus improving the system performance. In this paper, we provide theoretical analysis on the benefit of orthogonal linear transform for a memoryless nonlinear communication system. We show that the multicarrier system based on orthogonal linear transform performs better than the single carrier system in the presence of nonlinearity. Simulation results validate the theoretical analysis.