Recommender systems (RS) exploit user ratings on items and side information to make personalized recommendations. In order to recommend the right products to users, RS must accurately model the implicit preferences of each user and the properties of each product. In reality, both user preferences and item properties are changing dynamically over time, so treating the historical decisions of a user or the received comments of an item as static is inappropriate. Besides, the review text accompanied with a rating score can help us to understand why a user likes or dislikes an item, so temporal dynamics and text information in reviews are important side information for recommender systems. Moreover, compared with the large number of available items, the number of items a user can buy is very limited, which is called the sparsity problem. In order to solve this problem, utilizing item correlation provides a promising solution. Although famous methods like TimeSVD++, TopicMF and CoFactor partially take temporal dynamics, reviews and correlation into consideration, none of them combine these information together for accurate recommendation. Therefore, in this paper we propose a novel combined model called TmRevCo which is based on matrix factorization. Our model combines the dynamic user factor of TimeSVD++ with the hidden topic of each review text mined by the topic model of TopicMF through a new transformation function. Meanwhile, to support our five-scoring datasets, we use a more appropriate item correlation measure in CoFactor and associate the item factors of CoFactor with that of matrix factorization. Our model comprehensively combines the temporal dynamics, review information and item correlation simultaneously. Experimental results on three real-world datasets show that our proposed model leads to significant improvement compared with the baseline methods.
Ting WU
Chongqing University
Yong FENG
Chongqing University
JiaXing SANG
Chongqing University
BaoHua QIANG
Guilin University of Electronic Technology
YaNan WANG
Chongqing University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Ting WU, Yong FENG, JiaXing SANG, BaoHua QIANG, YaNan WANG, "A Novel Recommendation Algorithm Incorporating Temporal Dynamics, Reviews and Item Correlation" in IEICE TRANSACTIONS on Information,
vol. E101-D, no. 8, pp. 2027-2034, August 2018, doi: 10.1587/transinf.2017EDP7387.
Abstract: Recommender systems (RS) exploit user ratings on items and side information to make personalized recommendations. In order to recommend the right products to users, RS must accurately model the implicit preferences of each user and the properties of each product. In reality, both user preferences and item properties are changing dynamically over time, so treating the historical decisions of a user or the received comments of an item as static is inappropriate. Besides, the review text accompanied with a rating score can help us to understand why a user likes or dislikes an item, so temporal dynamics and text information in reviews are important side information for recommender systems. Moreover, compared with the large number of available items, the number of items a user can buy is very limited, which is called the sparsity problem. In order to solve this problem, utilizing item correlation provides a promising solution. Although famous methods like TimeSVD++, TopicMF and CoFactor partially take temporal dynamics, reviews and correlation into consideration, none of them combine these information together for accurate recommendation. Therefore, in this paper we propose a novel combined model called TmRevCo which is based on matrix factorization. Our model combines the dynamic user factor of TimeSVD++ with the hidden topic of each review text mined by the topic model of TopicMF through a new transformation function. Meanwhile, to support our five-scoring datasets, we use a more appropriate item correlation measure in CoFactor and associate the item factors of CoFactor with that of matrix factorization. Our model comprehensively combines the temporal dynamics, review information and item correlation simultaneously. Experimental results on three real-world datasets show that our proposed model leads to significant improvement compared with the baseline methods.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2017EDP7387/_p
Copy
@ARTICLE{e101-d_8_2027,
author={Ting WU, Yong FENG, JiaXing SANG, BaoHua QIANG, YaNan WANG, },
journal={IEICE TRANSACTIONS on Information},
title={A Novel Recommendation Algorithm Incorporating Temporal Dynamics, Reviews and Item Correlation},
year={2018},
volume={E101-D},
number={8},
pages={2027-2034},
abstract={Recommender systems (RS) exploit user ratings on items and side information to make personalized recommendations. In order to recommend the right products to users, RS must accurately model the implicit preferences of each user and the properties of each product. In reality, both user preferences and item properties are changing dynamically over time, so treating the historical decisions of a user or the received comments of an item as static is inappropriate. Besides, the review text accompanied with a rating score can help us to understand why a user likes or dislikes an item, so temporal dynamics and text information in reviews are important side information for recommender systems. Moreover, compared with the large number of available items, the number of items a user can buy is very limited, which is called the sparsity problem. In order to solve this problem, utilizing item correlation provides a promising solution. Although famous methods like TimeSVD++, TopicMF and CoFactor partially take temporal dynamics, reviews and correlation into consideration, none of them combine these information together for accurate recommendation. Therefore, in this paper we propose a novel combined model called TmRevCo which is based on matrix factorization. Our model combines the dynamic user factor of TimeSVD++ with the hidden topic of each review text mined by the topic model of TopicMF through a new transformation function. Meanwhile, to support our five-scoring datasets, we use a more appropriate item correlation measure in CoFactor and associate the item factors of CoFactor with that of matrix factorization. Our model comprehensively combines the temporal dynamics, review information and item correlation simultaneously. Experimental results on three real-world datasets show that our proposed model leads to significant improvement compared with the baseline methods.},
keywords={},
doi={10.1587/transinf.2017EDP7387},
ISSN={1745-1361},
month={August},}
Copy
TY - JOUR
TI - A Novel Recommendation Algorithm Incorporating Temporal Dynamics, Reviews and Item Correlation
T2 - IEICE TRANSACTIONS on Information
SP - 2027
EP - 2034
AU - Ting WU
AU - Yong FENG
AU - JiaXing SANG
AU - BaoHua QIANG
AU - YaNan WANG
PY - 2018
DO - 10.1587/transinf.2017EDP7387
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E101-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2018
AB - Recommender systems (RS) exploit user ratings on items and side information to make personalized recommendations. In order to recommend the right products to users, RS must accurately model the implicit preferences of each user and the properties of each product. In reality, both user preferences and item properties are changing dynamically over time, so treating the historical decisions of a user or the received comments of an item as static is inappropriate. Besides, the review text accompanied with a rating score can help us to understand why a user likes or dislikes an item, so temporal dynamics and text information in reviews are important side information for recommender systems. Moreover, compared with the large number of available items, the number of items a user can buy is very limited, which is called the sparsity problem. In order to solve this problem, utilizing item correlation provides a promising solution. Although famous methods like TimeSVD++, TopicMF and CoFactor partially take temporal dynamics, reviews and correlation into consideration, none of them combine these information together for accurate recommendation. Therefore, in this paper we propose a novel combined model called TmRevCo which is based on matrix factorization. Our model combines the dynamic user factor of TimeSVD++ with the hidden topic of each review text mined by the topic model of TopicMF through a new transformation function. Meanwhile, to support our five-scoring datasets, we use a more appropriate item correlation measure in CoFactor and associate the item factors of CoFactor with that of matrix factorization. Our model comprehensively combines the temporal dynamics, review information and item correlation simultaneously. Experimental results on three real-world datasets show that our proposed model leads to significant improvement compared with the baseline methods.
ER -