The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] item correlation(2hit)

1-2hit
  • TDCTFIC: A Novel Recommendation Framework Fusing Temporal Dynamics, CNN-Based Text Features and Item Correlation

    Meng Ting XIONG  Yong FENG  Ting WU  Jia Xing SHANG  Bao Hua QIANG  Ya Nan WANG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/05/14
      Vol:
    E102-D No:8
      Page(s):
    1517-1525

    The traditional recommendation system (RS) can learn the potential personal preferences of users and potential attribute characteristics of items through the rating records between users and items to make recommendations.However, for the new items with no historical rating records,the traditional RS usually suffers from the typical cold start problem. Additional auxiliary information has usually been used in the item cold start recommendation,we further bring temporal dynamics,text and relevance in our models to release item cold start.Two new cold start recommendation models TmTx(Time,Text) and TmTI(Time,Text,Item correlation) proposed to solve the item cold start problem for different cold start scenarios.While well-known methods like TimeSVD++ and CoFactor partially take temporal dynamics,comments,and item correlations into consideration to solve the cold start problem but none of them combines these information together.Two models proposed in this paper fused features such as time,text,and relevance can effectively improve the performance under item cold start.We select the convolutional neural network (CNN) to extract features from item description text which provides the model the ability to deal with cold start items.Both proposed models can effectively improve the performance with item cold start.Experimental results on three real-world data set show that our proposed models lead to significant improvement compared with the baseline methods.

  • A Novel Recommendation Algorithm Incorporating Temporal Dynamics, Reviews and Item Correlation

    Ting WU  Yong FENG  JiaXing SANG  BaoHua QIANG  YaNan WANG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/05/18
      Vol:
    E101-D No:8
      Page(s):
    2027-2034

    Recommender systems (RS) exploit user ratings on items and side information to make personalized recommendations. In order to recommend the right products to users, RS must accurately model the implicit preferences of each user and the properties of each product. In reality, both user preferences and item properties are changing dynamically over time, so treating the historical decisions of a user or the received comments of an item as static is inappropriate. Besides, the review text accompanied with a rating score can help us to understand why a user likes or dislikes an item, so temporal dynamics and text information in reviews are important side information for recommender systems. Moreover, compared with the large number of available items, the number of items a user can buy is very limited, which is called the sparsity problem. In order to solve this problem, utilizing item correlation provides a promising solution. Although famous methods like TimeSVD++, TopicMF and CoFactor partially take temporal dynamics, reviews and correlation into consideration, none of them combine these information together for accurate recommendation. Therefore, in this paper we propose a novel combined model called TmRevCo which is based on matrix factorization. Our model combines the dynamic user factor of TimeSVD++ with the hidden topic of each review text mined by the topic model of TopicMF through a new transformation function. Meanwhile, to support our five-scoring datasets, we use a more appropriate item correlation measure in CoFactor and associate the item factors of CoFactor with that of matrix factorization. Our model comprehensively combines the temporal dynamics, review information and item correlation simultaneously. Experimental results on three real-world datasets show that our proposed model leads to significant improvement compared with the baseline methods.