The search functionality is under construction.

Author Search Result

[Author] Ichiro TAKEDA(2hit)

1-2hit
  • EMI Reduction by Spread-Spectrum Clocking in Digitally-Controlled DC-DC Converters

    Ibuki MORI  Yoshihisa YAMADA  Santhos A. WIBOWO  Masashi KONO  Haruo KOBAYASHI  Yukihiro FUJIMURA  Nobukazu TAKAI  Toshio SUGIYAMA  Isao FUKAI  Norihisa ONISHI  Ichiro TAKEDA  Jun-ichi MATSUDA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1004-1011

    This paper proposes spread-spectrum clock modulation algorithms for EMI reduction in digitally-controlled DC-DC converters. In switching regulators using PWM, switching noise and harmonic noise concentrated in a narrow spectrum around the switching frequency can cause severe EMI. Spread-spectrum clock modulation can be used to minimize EMI. In conventional switching regulators using analog control it is very difficult to realize complex spread-spectrum clocking, however this paper shows that it is relatively easy to implement spread-spectrum EMI-reduction using digital control. The proposed algorithm was verified using a power converter simulator (SCAT).

  • Local Riesz Pyramid for Faster Phase-Based Video Magnification

    Shoichiro TAKEDA  Megumi ISOGAI  Shinya SHIMIZU  Hideaki KIMATA  

     
    PAPER

      Pubricized:
    2020/06/22
      Vol:
    E103-D No:10
      Page(s):
    2036-2046

    Phase-based video magnification methods can magnify and reveal subtle motion changes invisible to the naked eye. In these methods, each image frame in a video is decomposed into an image pyramid, and subtle motion changes are then detected as local phase changes with arbitrary orientations at each pixel and each pyramid level. One problem with this process is a long computational time to calculate the local phase changes, which makes high-speed processing of video magnification difficult. Recently, a decomposition technique called the Riesz pyramid has been proposed that detects only local phase changes in the dominant orientation. This technique can remove the arbitrariness of orientations and lower the over-completeness, thus achieving high-speed processing. However, as the resolution of input video increases, a large amount of data must be processed, requiring a long computational time. In this paper, we focus on the correlation of local phase changes between adjacent pyramid levels and present a novel decomposition technique called the local Riesz pyramid that enables faster phase-based video magnification by automatically processing the minimum number of sufficient local image areas at several pyramid levels. Through this minimum pyramid processing, our proposed phase-based video magnification method using the local Riesz pyramid achieves good magnification results within a short computational time.