The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Jia-Ming CHEN(2hit)

1-2hit
  • Analysis of an ATM Multiplexer with Correlated Real-Time and Independent Non-real-time Traffic

    Chung-Ju CHANG  Jia-Ming CHEN  Po-Chou LIN  

     
    PAPER-Communication Networks and Service

      Vol:
    E77-B No:12
      Page(s):
    1521-1529

    This paper presents an alternative traffic model for an ATM multiplexer providing video, voice, image, and data services. The traffic model classifies the input traffic into two types: real-time and non-real-time. The input process for realtime traffic is periodic and correlated, while that for non-realtime traffic is batch Poisson and independent. This multiplexer is assumed to be a priority queueing system with synchronous servers operating on time-frame basis and with separate finite buffers for each type of traffic. State probabilities and performance measures are successfully obtained using a Markov analysis technique and an application of the residue theorem in complex variable. The results can be applied in the design of an ATM multiplexer.

  • On a High-Ranking Node of B-ISDN

    Chung-Ju CHANG  Po-Chou LIN  Jia-Ming CHEN  

     
    PAPER-Communication Theory

      Vol:
    E77-B No:1
      Page(s):
    43-50

    The paper studies a high-ranking node in a broadband integrated services digital network(B-ISDN). The input traffic is classified into two types: real-time and non-real-time. For each type of input traffic, we assume that the message arrival process is a batch Poisson process and that the message size is arbitrarily distributed so as to describe services from narrowband to wideband. We model the high-ranking node by a queueing system with multiple synchronous servers and two separate finite buffers, one for each type of traffic. We derive performance measures exactly by using a two-dimensional imbedded discrete-time Markov chain analysis, within which the transition probabilities are obtained via an application of the residue theorem in complex variables. The performance measures include the blocking probability, delay, and throughput.