The search functionality is under construction.

Author Search Result

[Author] Jin NAKAZATO(2hit)

1-2hit
  • Frequency-Domain Differential Coding Schemes under Frequency-Selective Fading Environment in Adaptive Baseband Radio

    Jin NAKAZATO  Daiki OKUYAMA  Yuki MORIMOTO  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    488-498

    In our previous paper, we presented a concept of “Baseband Radio” as an ideal of future wireless communication scheme. Furthermore, for enhancing the adaptability of baseband radio, the adaptive baseband radio was discussed as the ultimate communication system; it integrates the functions of cognitive radio and software-defined radio. In this paper, two transmission schemes that take advantage of adaptive baseband radio are introduced and the results of a performance evaluation are presented. The first one is a scheme based on DSFBC for realizing higher reliability; it allows the flexible use of frequency bands over a wide range of white space. The second one is a low-power-density communication scheme with spectrum-spreading by means of frequency-domain differential coding so that the secondary system does not seriously interfere with primary-user systems that have been assigned the same frequency band.

  • Experimental Verification of SDN/NFV in Integrated mmWave Access and Mesh Backhaul Networks Open Access

    Makoto NAKAMURA  Hiroaki NISHIUCHI  Jin NAKAZATO  Konstantin KOSLOWSKI  Julian DAUBE  Ricardo SANTOS  Gia Khanh TRAN  Kei SAKAGUCHI  

     
    PAPER-Network

      Pubricized:
    2020/09/29
      Vol:
    E104-B No:3
      Page(s):
    217-228

    In this paper, a Proof-of-Concept (PoC) architecture is constructed, and the effectiveness of mmWave overlay heterogeneous network (HetNet) with mesh backhaul utilizing route-multiplexing and Multi-access Edge Computing (MEC) utilizing prefetching algorithm is verified by measuring the throughput and the download time of real contents. The architecture can cope with the intensive mobile data traffic since data delivery utilizes multiple backhaul routes based on the mesh topology, i.e. route-multiplexing mechanism. On the other hand, MEC deploys the network edge contents requested in advance by nearby User Equipment (UE) based on pre-registered context information such as location, destination, demand application, etc. to the network edge, which is called prefetching algorithm. Therefore, mmWave access can be fully exploited even with capacity-limited backhaul networks by introducing the proposed algorithm. These technologies solve the problems in conventional mmWave HetNet to reduce mobile data traffic on backhaul networks to cloud networks. In addition, the proposed architecture is realized by introducing wireless Software Defined Network (SDN) and Network Function Virtualization (NFV). In our architecture, the network is dynamically controlled via wide-coverage microwave band links by which UE's context information is collected for optimizing the network resources and controlling network infrastructures to establish backhaul routes and MEC servers. In this paper, we develop the hardware equipment and middleware systems, and introduce these algorithms which are used as a driver of IEEE802.11ad and open source software. For 5G and beyond, the architecture integrated in mmWave backhaul, MEC and SDN/NFV will support some scenarios and use cases.