The search functionality is under construction.

Author Search Result

[Author] Jin-long WANG(5hit)

1-5hit
  • DOA Estimation Methods Based on Covariance Differencing under a Colored Noise Environment

    Ning LI  Yan GUO  Qi-Hui WU  Jin-Long WANG  Xue-Liang LIU  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    735-741

    A method based on covariance differencing for a uniform linear array is proposed to counter the problem of direction finding of narrowband signals under a colored noise environment. By assuming a Hermitian symmetric Toeplitz matrix for the unknown noise, the array covariance matrix is transformed into a centrohermitian matrix in an appropriate way allowing the noise component to be eliminated. The modified covariance differencing algorithm provides accurate direction of arrival (DOA) estimation when the incident signals are uncorrelated or just two of the signals are coherent. If there are more than two coherent signals, the presented method combined with spatial smoothing (SS) scheme can be used. Unlike the original method, the new approach dispenses the need to determine the true angles and the phantom angles. Simulation results demonstrate the effectiveness of presented algorithm.

  • An Efficient Transmit Power and Bit Rate Allocation Algorithm for OFDM Based Cognitive Radio Systems

    Yuehuai MA  Youyun XU  Jin-Long WANG  

     
    LETTER-Network

      Vol:
    E94-B No:1
      Page(s):
    302-306

    We consider the problem of transmit power and bit rate allocation for OFDM based cognitive radio systems. An efficient allocation algorithm which mainly consists of two steps is proposed to maximize the sum rate of secondary users. In the first step of the algorithm, original nonlinear problem is converted to a convex problem which is solved by dual methods, and in the second step the final resource allocation results is obtained via iterative power rescale operation. Numerical results show the effectiveness of the proposed algorithm.

  • Multiple Blind Beamforming Based on LSCMA

    Yan GUO  Ning LI  Myoung-Seob LIM  Jin-Long WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:8
      Page(s):
    2708-2713

    Blind beamforming plays an important role in multiple-input multiple-output (MIMO) Systems, radar, cognitive radio, and system identification. In this paper, we propose a new algorithm for multiple blind beamforming algorithm based on the least square constant modulus algorithm (LSCMA). The new method consists of the following three parts: (a) beamforming of one signal with LSCMA. (b) direction-of-arrival (DOA) estimation of the remaining signals by rooting the weight vector polynomial. (c) beamforming of the remaining signals with linear constraints minimum variance (LCMV) method. After the convergence of LSCMA, one signal is captured and the arrival angles of the remaining signals can be obtained by rooting the weight vector polynomial. Therefore, beamforming can be quickly established for the remaining signals using LCMV method. Simultaneously the DOA of the signals can also be obtained. Simulation results show the performance of the presented method.

  • State Transition Probability Based Sensing Duration Optimization Algorithm in Cognitive Radio

    Jin-long WANG  Xiao ZHANG  Qihui WU  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3258-3265

    In a periodic spectrum sensing framework where each frame consists of a sensing block and a data transmitting block, increasing sensing duration decreases the probabilities of both missed opportunity and interference with primary users, but increasing sensing duration also decreases the energy efficiency and the transmitting efficiency of the cognitive network. Therefore, the sensing duration to use is a trade-off between sensing performance and system efficiencies. The relationships between sensing duration and state transition probability are analyzed firstly, when the licensed channel stays in the idle and busy states respectively. Then a state transition probability based sensing duration optimization algorithm is proposed, which can dynamically optimize the sensing duration of each frame in the current idle/busy state by predicting each frame's state transition probability at the beginning of the current state. Analysis and simulation results reveal that the time-varying optimal sensing duration increases as the state transition probability increases and compared to the existing method, the proposed algorithm can use as little sensing duration in each frame as possible to satisfy the sensing performance constraints so as to maximize the energy and transmitting efficiencies of the cognitive networks.

  • Joint Frequency and Power Allocation in Wireless Mesh Networks: A Self-Pricing Game Model

    Xin LIU  Jin-long WANG  Qihui WU  Yang YANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2857-2867

    We investigate the problem of joint frequency and power allocation in wireless mesh networks, using a self-pricing game based solution. In traditional pricing game models, the price factor is determined from the global information of the network, which causes heavy communication overhead. To overcome this problem, we propose a self-pricing game model, in which the price factor is determined by the distributed access points processing their individual information; moreover, it is implemented in an autonomous and distributed fashion. The existence and the efficiency of Nash equilibrium (NE) of the proposed game are studied. It is shown that the proposed game based solution achieves near cooperative network throughput while it reduces the communication overhead significantly. Also, a forcing convergence algorithm is proposed to counter the vibration of channel selection. Simulation results verify the effectiveness and robustness of the proposed scheme.