The search functionality is under construction.

Author Search Result

[Author] Xiao ZHANG(5hit)

1-5hit
  • k-Uniform States and Quantum Combinatorial Designs

    Shanqi PANG  Xiankui PENG  Xiao ZHANG  Ruining ZHANG  Cuijiao YIN  

     
    PAPER-Information Theory

      Pubricized:
    2021/12/20
      Vol:
    E105-A No:6
      Page(s):
    975-982

    Quantum combinatorial designs are gaining popularity in quantum information theory. Quantum Latin squares can be used to construct mutually unbiased maximally entangled bases and unitary error bases. Here we present a general method for constructing quantum Latin arrangements from irredundant orthogonal arrays. As an application of the method, many new quantum Latin arrangements are obtained. We also find a sufficient condition such that the improved quantum orthogonal arrays [10] are equivalent to quantum Latin arrangements. We further prove that an improved quantum orthogonal array can produce a quantum uniform state.

  • Quantum Frequency Arrangements, Quantum Mixed Orthogonal Arrays and Entangled States Open Access

    Shanqi PANG  Ruining ZHANG  Xiao ZHANG  

     
    LETTER-Mathematical Systems Science

      Pubricized:
    2020/06/08
      Vol:
    E103-A No:12
      Page(s):
    1674-1678

    In this work, we introduce notions of quantum frequency arrangements consisting of quantum frequency squares, cubes, hypercubes and a notion of orthogonality between them. We also propose a notion of quantum mixed orthogonal array (QMOA). By using irredundant mixed orthogonal array proposed by Goyeneche et al. we can obtain k-uniform states of heterogeneous systems from quantum frequency arrangements and QMOAs. Furthermore, some examples are presented to illustrate our method.

  • State Transition Probability Based Sensing Duration Optimization Algorithm in Cognitive Radio

    Jin-long WANG  Xiao ZHANG  Qihui WU  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3258-3265

    In a periodic spectrum sensing framework where each frame consists of a sensing block and a data transmitting block, increasing sensing duration decreases the probabilities of both missed opportunity and interference with primary users, but increasing sensing duration also decreases the energy efficiency and the transmitting efficiency of the cognitive network. Therefore, the sensing duration to use is a trade-off between sensing performance and system efficiencies. The relationships between sensing duration and state transition probability are analyzed firstly, when the licensed channel stays in the idle and busy states respectively. Then a state transition probability based sensing duration optimization algorithm is proposed, which can dynamically optimize the sensing duration of each frame in the current idle/busy state by predicting each frame's state transition probability at the beginning of the current state. Analysis and simulation results reveal that the time-varying optimal sensing duration increases as the state transition probability increases and compared to the existing method, the proposed algorithm can use as little sensing duration in each frame as possible to satisfy the sensing performance constraints so as to maximize the energy and transmitting efficiencies of the cognitive networks.

  • Dynamic VNF Scheduling: A Deep Reinforcement Learning Approach

    Zixiao ZHANG  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/01/10
      Vol:
    E106-B No:7
      Page(s):
    557-570

    This paper introduces a deep reinforcement learning approach to solve the virtual network function scheduling problem in dynamic scenarios. We formulate an integer linear programming model for the problem in static scenarios. In dynamic scenarios, we define the state, action, and reward to form the learning approach. The learning agents are applied with the asynchronous advantage actor-critic algorithm. We assign a master agent and several worker agents to each network function virtualization node in the problem. The worker agents work in parallel to help the master agent make decision. We compare the introduced approach with existing approaches by applying them in simulated environments. The existing approaches include three greedy approaches, a simulated annealing approach, and an integer linear programming approach. The numerical results show that the introduced deep reinforcement learning approach improves the performance by 6-27% in our examined cases.

  • Joint Virtual Network Function Deployment and Scheduling via Heuristics and Deep Reinforcement Learning

    Zixiao ZHANG  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/08/01
      Vol:
    E106-B No:12
      Page(s):
    1424-1440

    This paper introduces heuristic approaches and a deep reinforcement learning approach to solve a joint virtual network function deployment and scheduling problem in a dynamic scenario. We formulate the problem as an optimization problem. Based on the mathematical description of the optimization problem, we introduce three heuristic approaches and a deep reinforcement learning approach to solve the problem. We define an objective to maximize the ratio of delay-satisfied requests while minimizing the average resource cost for a dynamic scenario. Our introduced two greedy approaches are named finish time greedy and computational resource greedy, respectively. In the finish time greedy approach, we make each request be finished as soon as possible despite its resource cost; in the computational resource greedy approach, we make each request occupy as few resources as possible despite its finish time. Our introduced simulated annealing approach generates feasible solutions randomly and converges to an approximate solution. In our learning-based approach, neural networks are trained to make decisions. We use a simulated environment to evaluate the performances of our introduced approaches. Numerical results show that the introduced deep reinforcement learning approach has the best performance in terms of benefit in our examined cases.