1-2hit |
Hyunjeong PARK Hyungsoo KIM Jun So PAK Changwook YOON Kyoungchoul KOO Joungho KIM
In this paper, we present and verify a new chip-package co-modeling and simulation approach for a low-noise chip-package hierarchical power distribution network (PDN) design. It is based on a hierarchical modeling to combine distributed circuit models at both chip-level PDN and package-level PDN. In particular, it includes all on- and off-chip parasitic circuit elements in the hierarchical PDN with a special consideration on on-chip decoupling capacitor design and placement inside chip. The proposed hierarchical PDN model was successfully validated with good correlations and subsequent analysis to a series of Z11 and Z21 PDN impedance measurements with a frequency range from 1 MHz to 3 GHz. Using the proposed model, we can analyze and estimate the performance of the chip-package hierarchical PDN as well as can predict the effect of high frequency electromagnetic interactions between the chip-level PDN and the package-level PDN. Furthermore, we can precisely anticipate PDN resonance frequencies, noise generation sources, and noise propagation paths through the multiple levels in the hierarchical PDN.
Jun So PAK Masahiro AOYAGI Katsuya KIKUCHI Joungho KIM
The effect of the power/ground plane on the through-hole signal via is analyzed in a viewpoint of a band-stop filter. When the through-hole signal via passes through the power/ground plane, the return current path discontinuity of the through-hole signal via occurs due to the high impedance of the power/ground plane. Since the high impedance is produced by the power/ground plane resonance, it acts as a band-stop filter, which is connected to the signal trace in series. Therefore, the power/ground plane filters off its resonance frequency component by absorbing and reflecting from the signal on the through-hole signal via, and consequently the signal distortion, the power/ground plane noise voltage, and the consequent radiated emission occur. With S-parameter and TDR-TDT measurements, the band-stop effect of the power/ground plane on the through-hole signal via is confirmed. And then, this analysis is applied to the clock transmission through the through-hole signal via to obtain the clearer confirmation. The measurements of the distorted clock waveforms, the induced power/ground plane noise voltages, and the radiated emissions depending on the power/ground plane impedance around the through-hole signal via are shown.