The search functionality is under construction.

Author Search Result

[Author] Jun TANAKA(3hit)

1-3hit
  • Path-Moose: A Scalable All-Path Bridging Protocol

    Guillermo IBÁÑEZ  Iván MARSÁ-MAESTRE  Miguel A. LOPEZ-CARMONA  Ignacio PÉREZ-IBÁÑEZ  Jun TANAKA  Jon CROWCROFT  

     
    PAPER-Network System

      Vol:
    E96-B No:3
      Page(s):
    756-763

    This paper describes Path-Moose, a scalable tree-based shortest path bridging protocol. Both ARP-Path and Path-Moose protocols belong to a new category of bridges that we name All-path, because all paths of the network are explored simultaneously with a broadcast frame distributed over all network links to find a path or set a multicast tree. Path-Moose employs the ARP-based low latency routing mechanism of the ARP-Path protocol on a bridge basis instead of a per-single-host basis. This increases scalability by reducing forwarding table entries at core bridges by a factor of fifteen times for big data center networks and achieves a faster reconfiguration by an approximate factor of ten. Reconfiguration time is significantly shorter than ARP-Path (zero in many cases) because, due to the sharing of network paths by the hosts connected to same edge bridges, when a host needs the path it has already been recovered by another user of the path. Evaluation through simulations shows protocol correctness and confirms the theoretical evaluation results.

  • A Flexible Direct Attached Storage for a Data Intensive Application

    Takatsugu ONO  Yotaro KONISHI  Teruo TANIMOTO  Noboru IWAMATSU  Takashi MIYOSHI  Jun TANAKA  

     
    PAPER-Storage System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2168-2177

    Big data analysis and a data storing applications require a huge volume of storage and a high I/O performance. Applications can achieve high level of performance and cost efficiency by exploiting the high I/O performance of direct attached storages (DAS) such as internal HDDs. With the size of stored data ever increasing, it will be difficult to replace servers since internal HDDs contain huge amounts of data. Generally, the data is copied via Ethernet when transferring the data from the internal HDDs to the new server. However, the amount of data will continue to rapidly increase, and thus, it will be hard to make these types of transfers through the Ethernet since it will take a long time. A storage area network such as iSCSI can be used to avoid this problem because the data can be shared with the servers. However, this decreases the level of performance and increases the costs. Improving the flexibility without incurring I/O performance degradation is required in order to improve the DAS architecture. In response to this issue, we propose FlexDAS, which improves the flexibility of direct attached storage by using a disk area network (DAN) without degradation the I/O performance. A resource manager connects or disconnects the computation nodes to the HDDs via the FlexDAS switch, which supports the SAS or SATA protocols. This function enables for the servers to be replaced in a short period of time. We developed a prototype FlexDAS switch and quantitatively evaluated the architecture. Results show that the FlexDAS switch can disconnect and connect the HDD to the server in just 1.16 seconds. We also confirmed that the FlexDAS improves the performance of the data intensive applications by up to 2.84 times compared with the iSCSI.

  • Diffserv-Based QoS over ATM Access Networks

    Tomohiro ISHIHARA  Jun TANAKA  Michio GOTO  Sotaro ODA  

     
    PAPER

      Vol:
    E84-B No:6
      Page(s):
    1498-1503

    We have developed a new scheme to provide Diffserv-based QoS over ATM access networks. Well-known Diffserv over ATM scheme requires some extension for conventional routers with ATM interfaces. The routers must map their Diffserv classes of services into ATM QoS classes and forward IP packets into prioritized VCs based on DSCP (DiffServ Code Point). The purpose of this work is to provide Diffserv-based QoS over ATM network using conventional IP over ATM interfaces on routers. We propose DSCP snooping at ATM edge nodes, which differentiates services over a single VC between two IP domains. A prototype circuit was used to evaluate this scheme.