1-14hit |
Kai YANG Hiroyuki KUDO Tsuneo SAITO
We introduce a new wavelet image coding framework using context-based zerotree quantization, where an unique and efficient method for optimization of zerotree quantization is proposed. Because of the localization properties of wavelets, when a wavelet coefficient is to be quantized, the best quantizer is expected to be designed to match the statistics of the wavelet coefficients in its neighborhood, that is, the quantizer should be adaptive both in space and frequency domain. Previous image coders tended to design quantizers in a band or a class level, which limited their performances as it is difficult for the localization properties of wavelets to be exploited. Contrasting with previous coders, we propose to trace the localization properties with the combination of the tree-structured wavelet representations and adaptive models which are spatial-varying according to the local statistics. In the paper, we describe the proposed coding algorithm, where the spatial-varying models are estimated from the quantized causal neighborhoods and the zerotree pruning is based on the Lagrangian cost that can be evaluated from the statistics nearby the tree. In this way, optimization of zerotree quantization is no longer a joint optimization problem as in SFQ. Simulation results demonstrate that the coding performance is competitive, and sometimes is superior to the best results of zerotree-based coding reported in SFQ.
Xiangdong HUANG Mengkai YANG Mingzhuo LIU Lin YANG Haipeng FU
This paper addresses joint estimation of the frequency and the direction-of-arrival (DOA), under the relaxed condition that both snapshots in the temporal domain and sensors in the spacial domain are sparsely spaced. Specifically, a novel coprime sparse array allowing a large range for interelement spacings is employed in the proposed joint scheme, which greatly alleviates the conventional array's half-wavelength constraint. Further, by incorporating small-sized DFT spectrum correction with the closed-form robust Chinese Remainder Theorem (CRT), both spectral aliasing and integer phase ambiguity caused by spatio-temporal under-sampling can be removed in an efficient way. As a result, these two parameters can be efficiently estimated by reusing the observation data collected in parallel at different undersampling rates, which remarkably improves the data utilization. Numerical results demonstrate that the proposed joint scheme is highly accurate.
In this letter, we investigate the performance of cooperative decode-and-forward multiple-input multiple-output relaying system using orthogonal space-time block codes with piecewise-linear (PL) receiver over correlated Nakagami-m fading channels for integer values of m. We derive the closed-form expression for the exact bit error rates of binary phase shift keying signals. The analytical expression is validated through numerical results. It is shown that the performance of PL receiver outperforms that of conventional maximal ratio combining receiver.
Jie YANG Xiaofei ZHANG Kai YANG
In this paper, we analyze the performance of a dual-hop multiuser amplify-and-forward (AF) relay network with the effect of the feedback delay, where the source and each of the K destinations are equipped with Nt and Nr antennas respectively, and the relay is equipped with a single antenna. In the relay network, multi-antenna and multiuser diversities are guaranteed via beamforming and opportunistic scheduling, respectively. To examine the impact of delayed feedback, the new exact analytical expressions for the outage probability (OP) and symbol error rate (SER) are derived in closed-form over Rayleigh fading channel, which are useful for a large number of modulation schemes. In addition, we present the asymptotic expressions for OP and SER in the high signal-to-noise ratio (SNR) regime, from which we gain an insight into the system performance with deriving the diversity order and array gain. Moreover, based on the asymptotic expressions, we determine power allocation among the network nodes such that the OP is minimized. The analytical expressions are validated by Monte-Carlo simulations.
Jie YANG Yingying YUAN Nan YANG Kai YANG Xiaofei ZHANG
We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.
Zongkai YANG Chunhui LE Jianhua HE Chun Tung CHOU Wei LIU
To guarantee QoS for multicast transmission, admission control for multicast sessions is expected. Probe-based multicast admission control (PBMAC) scheme is a scalable and simple approach. However, PBMAC suffers from the subsequent request problem which can significantly reduce the maximum number of multicast sessions that a network can admit. In this letter, we describe the subsequent request problem and propose an enhanced PBMAC scheme to solve this problem. The enhanced scheme makes use of complementary probing and remarking which require only minor modification to the original scheme. By using a fluid-based analytical model, we are able to prove that the enhanced scheme can always admit a higher number of multicast sessions. Furthermore, we present validation of the analytical model using packet based simulation.
Aihua WANG Kai YANG Jianping AN Xiangyuan BU
Location of a source is of considerable interest in wireless sensor networks, and it can be estimated from passive measurements of the arrival times. A novel algorithm for source location by utilizing the time of arrival (TOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on total least-squares (TLS) method, which is a generalized least-squares method to solve an overdetermined set of equations whose coefficients are noisy, and gives an explicit solution. Comparisons of performance with standard least-squares method are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed TLS algorithm gives better results than LS algorithm.
This letter presents a simple but accurate analytical model to evaluate the throughput of IEEE 802.11 distributed coordination function in non-saturated conditions. The influence of offered load on the throughput of both basic and RTS/CTS access mechanisms are analyzed and compared. It's shown that basic access scheme can achieve the same maximal throughput as that of RTS/CTS mechanism in non-saturated conditions while the latter is robust to the number of contending stations compared to basic mechanism. The analytical results are validated by extensive simulations.
Jie YANG Xiaofei ZHANG Kai YANG
The outage performance of a multiuser two-way amplify-and-forward (AF) relaying network, where N-th best selection scheme with the consideration to the feedback delay, is investigated. Specifically, the new closed-form expressions for cumulative distribution function (CDF) and outage probability (OP) are presented over time varying Rayleigh-fading channels. Furthermore, simple approximate OP is derived assessing the high signal-to-noise-ratio (SNR), which identifies the diversity behavior. Numerical results show excellent agreement with theoretical results.
Leiqi ZHU Dongkai YANG Qishan ZHANG
In order to reduce the convergence time in an iterative procedure, some gradient based preliminary processes are employed to eliminate outliers. The adaptive variable block size is also introduced to balance the accuracy and computational complexity. Moreover, the use of Canberra distance instead of Euclidean distance illustrates higher performance in measuring motion similarity.
Zongkai YANG Yong YUAN Jianhua HE Wenqing CHEN
Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities.
Kai YANG Jianping AN Xiangyuan BU Zhan XU
A novel algorithm for source location by utilizing the time-difference-of-arrival (TDOA) of a signal received at spatially separated sensors is proposed. The algorithm is based on the constrained total least-squares (CTLS) technique and gives an explicit solution. Simulation results demonstrate that the proposed algorithm has high location accuracy and its performance is close to the Cramer-Rao lower bound (CRLB).
Jianhua HE Lin ZHENG Zongkai YANG Chun Tung CHOU Zuoyin TANG
This paper considers the problem of providing relative service differentiation in IEEE 802.11 Wireless LAN by using different Medium Access Control (MAC) parameters for different service classes. We present an analytical model which predicts the saturation throughput of IEEE 802.11 Distributed Coordination Function with multiple classes of service. This model allows us to show that relative service differentiation can be achieved by varying the initial contention window alone. In this case, the saturation throughput of a station can be shown to be approximately inversely proportional to the initial contention window size being used by that station. The simulation results validate our analytical model.
Yanxin YAO Qishan ZHANG Dongkai YANG
A method is proposed for estimating code and carrier phase parameters of GNSS reflected signals in low SNR (signal-to-noise ratio) environments. Simulation results show that the multipath impact on code and carrier with 0.022 C/A chips delay can be estimated in 0 dB SNR in the condition of 46 MHz sampling rate.