The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kaiyu WANG(2hit)

1-2hit
  • Umbrellalike Hierarchical Artificial Bee Colony Algorithm

    Tao ZHENG  Han ZHANG  Baohang ZHANG  Zonghui CAI  Kaiyu WANG  Yuki TODO  Shangce GAO  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/12/05
      Vol:
    E106-D No:3
      Page(s):
    410-418

    Many optimisation algorithms improve the algorithm from the perspective of population structure. However, most improvement methods simply add hierarchical structure to the original population structure, which fails to fundamentally change its structure. In this paper, we propose an umbrellalike hierarchical artificial bee colony algorithm (UHABC). For the first time, a historical information layer is added to the artificial bee colony algorithm (ABC), and this information layer is allowed to interact with other layers to generate information. To verify the effectiveness of the proposed algorithm, we compare it with the original artificial bee colony algorithm and five representative meta-heuristic algorithms on the IEEE CEC2017. The experimental results and statistical analysis show that the umbrellalike mechanism effectively improves the performance of ABC.

  • Fitness-Distance Balance with Functional Weights: A New Selection Method for Evolutionary Algorithms

    Kaiyu WANG  Sichen TAO  Rong-Long WANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/07/21
      Vol:
    E104-D No:10
      Page(s):
    1789-1792

    In 2019, a new selection method, named fitness-distance balance (FDB), was proposed. FDB has been proved to have a significant effect on improving the search capability for evolutionary algorithms. But it still suffers from poor flexibility when encountering various optimization problems. To address this issue, we propose a functional weights-enhanced FDB (FW). These functional weights change the original weights in FDB from fixed values to randomly generated ones by a distribution function, thereby enabling the algorithm to select more suitable individuals during the search. As a case study, FW is incorporated into the spherical search algorithm. Experimental results based on various IEEE CEC2017 benchmark functions demonstrate the effectiveness of FW.