The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Sichen TAO(1hit)

1-1hit
  • Fitness-Distance Balance with Functional Weights: A New Selection Method for Evolutionary Algorithms

    Kaiyu WANG  Sichen TAO  Rong-Long WANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/07/21
      Vol:
    E104-D No:10
      Page(s):
    1789-1792

    In 2019, a new selection method, named fitness-distance balance (FDB), was proposed. FDB has been proved to have a significant effect on improving the search capability for evolutionary algorithms. But it still suffers from poor flexibility when encountering various optimization problems. To address this issue, we propose a functional weights-enhanced FDB (FW). These functional weights change the original weights in FDB from fixed values to randomly generated ones by a distribution function, thereby enabling the algorithm to select more suitable individuals during the search. As a case study, FW is incorporated into the spherical search algorithm. Experimental results based on various IEEE CEC2017 benchmark functions demonstrate the effectiveness of FW.