The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kangin LEE(1hit)

1-1hit
  • Convolution Block Feature Addition Module (CBFAM) for Lightweight and Fast Object Detection on Non-GPU Devices

    Min Ho KWAK  Youngwoo KIM  Kangin LEE  Jae Young CHOI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/01/24
      Vol:
    E106-D No:5
      Page(s):
    1106-1110

    This letter proposes a novel lightweight deep learning object detector named LW-YOLOv4-tiny, which incorporates the convolution block feature addition module (CBFAM). The novelty of LW-YOLOv4-tiny is the use of channel-wise convolution and element-wise addition in the CBFAM instead of utilizing the concatenation of different feature maps. The model size and computation requirement are reduced by up to 16.9 Mbytes, 5.4 billion FLOPs (BFLOPS), and 11.3 FPS, which is 31.9%, 22.8%, and 30% smaller and faster than the most recent version of YOLOv4-tiny. From the MSCOCO2017 and PASCAL VOC2012 benchmarks, LW-YOLOv4-tiny achieved 40.2% and 69.3% mAP, respectively.