The search functionality is under construction.

Author Search Result

[Author] Kazuhisa MATSUZONO(2hit)

1-2hit
  • Cefore: Software Platform Enabling Content-Centric Networking and Beyond Open Access

    Hitoshi ASAEDA  Atsushi OOKA  Kazuhisa MATSUZONO  Ruidong LI  

     
    INVITED PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1792-1803

    Information-Centric or Content-Centric Networking (ICN/CCN) is a promising novel network architecture that naturally integrates in-network caching, multicast, and multipath capabilities, without relying on centralized application-specific servers. Software platforms are vital for researching ICN/CCN; however, existing platforms lack a focus on extensibility and lightweight implementation. In this paper, we introduce a newly developed software platform enabling CCN, named Cefore. In brief, Cefore is lightweight, with the ability to run even on top of a resource-constrained device, but is also easily extensible with arbitrary plugin libraries or external software implementations. For large-scale experiments, a network emulator (Cefore-Emu) and network simulator (Cefore-Sim) have also been developed for this platform. Both Cefore-Emu and Cefore-Sim support hybrid experimental environments that incorporate physical networks into the emulated/simulated networks. In this paper, we describe the design, specification, and usage of Cefore as well as Cefore-Emu and Cefore-Sim. We show performance evaluations of in-network caching and streaming on Cefore-Emu and content fetching on Cefore-Sim, verifying the salient features of the Cefore software platform.

  • A Survey of Information-Centric Networking: The Quest for Innovation Open Access

    Hitoshi ASAEDA  Kazuhisa MATSUZONO  Yusaku HAYAMIZU  Htet Htet HLAING  Atsushi OOKA  

     
    INVITED PAPER-Network

      Pubricized:
    2023/08/22
      Vol:
    E107-B No:1
      Page(s):
    139-153

    Information-Centric Networking (ICN) is an innovative technology that provides low-loss, low-latency, high-throughput, and high-reliability communications for diversified and advanced services and applications. In this article, we present a technical survey of ICN functionalities such as in-network caching, routing, transport, and security mechanisms, as well as recent research findings. We focus on CCNx, which is a prominent ICN protocol whose message types are defined by the Internet Research Task Force. To facilitate the development of functional code and encourage application deployment, we introduce an open-source software platform called Cefore that facilitates CCNx-based communications. Cefore consists of networking components such as packet forwarding and in-network caching daemons, and it provides APIs and a Python wrapper program that enables users to easily develop CCNx applications for on Cefore. We introduce a Mininet-based Cefore emulator and lightweight Docker containers for running CCNx experiments on Cefore. In addition to exploring ICN features and implementations, we also consider promising research directions for further innovation.