1-6hit |
Yusaku HAYAMIZU Akihisa SHIBUYA Miki YAMAMOTO
In content oriented networks (CON), routers in a network are generally equipped with local cache storages and store incoming contents temporarily. Efficient utilization of total cache storage in networks is one of the most important technical issues in CON, as it can reduce content server load, content download latency and network traffic. Performance of networked cache is reported to strongly depend on both cache decision and content request routing. In this paper, we evaluate several combinations of these two strategies. Especially for routing, we take up off-path cache routing, Breadcrumbs, as one of the content request routing proposals. Our performance evaluation results show that off-path cache routing, Breadcrumbs, suffers low performance with cache decisions which generally has high performance with shortest path routing (SPR), and obtains excellent performance with TERC (Transparent En-Route Cache) which is well-known to have low performance with widely used SPR. Our detailed evaluation results in two network environments, emerging CONs and conventional IP, show these insights hold in both of these two network environments.
Yusaku HAYAMIZU Miki YAMAMOTO Elisha ROSENSWEIG James F. KUROSE
In-network guidance to off-path cache, Breadcrumbs, has been proposed for cache network. It guides content requests to off-path cached contents by using the latest content download direction pointer, breadcrumbs. In Breadcrumbs, breadcrumb pointer is overwritten when a new content download of the corresponding content passes through a router. There is a possibility that slightly old guidance information for popular contents might lead to better cached content than the latest one. In this paper, we propose a new in-network guidance, Multiple-Breadcrumbs, which holds old breadcrumbs even with the latest breadcrumb pointer generated with a new content download. We focus on its content search capability and propose Throughput Sensitive selection that selects the content source giving the best estimated throughput. Our performance evaluation gives interesting results that our proposed Multiple Breadcrumbs with Throughput Sensitive selection improves not only throughput for popular contents but also for unpopular contents.
Yusaku HAYAMIZU Masahiro JIBIKI Miki YAMAMOTO
Information-Centric Networking (ICN) originally innovated for efficient data distribution, is currently discussed to be applied to edge computing environment. In this paper, we focus on a more flexible context, in-network computing, which is enabled by ICN architecture. In ICN-based in-network computing, a function chaining (routing) method for chaining multiple functions located at different routers widely distributed in the network is required. Our proposal is a twofold approach, On-demand Routing for Responsive Route (OR3) and Route Records (RR). OR3 efficiently chains data and multiple functions compared with an existing routing method. RR reactively stores routing information to reduce communication/computing overhead. In this paper, we conducted a mathematical analytics in order to verify the correctness of the proposed routing algorithm. Moreover, we investigate applicabilities of OR3/RR to an edge computing context in the future Beyond 5G/6G era, in which rich computing resources are provided by mobile nodes thanks to the cutting-edge mobile device technologies. In the mobile environments, the optimum from viewpoint of “routing” is largely different from the stable wired environment. We address this challenging issue and newly propose protocol enhancements for OR3 by considering node mobility. Evaluation results reveal that mobility-enhanced OR3 can discover stable paths for function chaining to enable more reliable ICN-based in-network computing under the highly-dynamic network environment.
Hitoshi ASAEDA Kazuhisa MATSUZONO Yusaku HAYAMIZU Htet Htet HLAING Atsushi OOKA
Information-Centric Networking (ICN) is an innovative technology that provides low-loss, low-latency, high-throughput, and high-reliability communications for diversified and advanced services and applications. In this article, we present a technical survey of ICN functionalities such as in-network caching, routing, transport, and security mechanisms, as well as recent research findings. We focus on CCNx, which is a prominent ICN protocol whose message types are defined by the Internet Research Task Force. To facilitate the development of functional code and encourage application deployment, we introduce an open-source software platform called Cefore that facilitates CCNx-based communications. Cefore consists of networking components such as packet forwarding and in-network caching daemons, and it provides APIs and a Python wrapper program that enables users to easily develop CCNx applications for on Cefore. We introduce a Mininet-based Cefore emulator and lightweight Docker containers for running CCNx experiments on Cefore. In addition to exploring ICN features and implementations, we also consider promising research directions for further innovation.
Yusaku HAYAMIZU Tomohiko YAGYU Miki YAMAMOTO
Communication infrastructures under the influence of the disaster strike, e.g., earthquake, will be partitioned due to the significant damage of network components such as base stations. The communication model of the Internet bases on a location-oriented ID, i.e., IP address, and depends on the DNS (Domain Name System) for name resolution. Therefore such damage remarkably deprives the reachability to the information. To achieve robustness of information retrieval in disaster situation, we try to apply CCN/NDN (Content-Centric Networking/Named-Data Networking) to information networks fragmented by the disaster strike. However, existing retransmission control in CCN is not suitable for the fragmented networks with intermittent links due to the timer-based end-to-end behavior. Also, the intermittent links cause a problem for cache behavior. In order to resolve these technical issues, we propose a new packet forwarding scheme with the dynamic routing protocol which resolves retransmission control problem and cache control scheme suitable for the fragmented networks. Our simulation results reveal that the proposed caching scheme can stably store popular contents into cache storages of routers and improve cache hit ratio. And they also reveal that our proposed packet forwarding method significantly improves traffic load, energy consumption and content retrieval delay in fragmented networks.
In Information-Centric Networking (ICN), different routing and caching schemes have been proposed to efficiently utilize in-network caches and reduce network traffic. Most of them assume that the popularity distribution of user-requested content is homogeneous. However, the actual popularity distribution measured on the Internet is reported to possess spatial and temporal localities, which can heavily affect caching performance in ICN. Breadcrumbs (BC) routing is a key solution to mitigate performance degradation due to spatial locality because of its ability to flexibly discover cached contents in the off-path. In this paper, we deeply investigate the spatial effects of BC by revealing where utilized cached contents are located, how BC discovers these contents, what kind of contents are found, and how BC fill in the locality gap of content popularity. We also focus on another time-dimension perspective, i.e., the temporal locality of content popularity, and conduct a comprehensive study of how BC routing can be adapted to the spatiotemporal locality of content popularity in ICN.