1-3hit |
Kazutaka HARA Atsuko KAWAKITA Yasutaka KIMURA Yasuhiro SUZUKI Satoshi IKEDA Kohji TSUJI
A long-reach coexisting PON system (1G/10G-EPON, video, and TWDM-PON) that uses the Wavelength Selective-Asymmetrical optical SPlitter (WS-ASP) without any active devices like optical amplifiers is proposed. The proposal can take into account the subscriber distribution in an access network and provide specific services in specific areas by varying the splitting ratios and the branch structure in the optical splitter. Simulations confirm the key features of WS-ASP, its novel process for deriving the splitting-ratios and greater transmission distance than possible with symmetrical splitters. Experiments on a prototype system demonstrate how wavelengths can be assigned to specific areas and optical link budget enhancement. For 1G-EPON systems, the prototype system with splitting-ratio of 60% attains the optical link budget enhancement of 4.2dB compared with conventional symmetrical optical splitters. The same prototype offers the optical link budget enhancement of 4.0dB at the bit rate of 10G-EPON systems. The values measured in the experiment agree well with the simulation results with respect to the transmission distance.
Kazutaka HARA Shunji KIMURA Hirotaka NAKAMURA Naoto YOSHIMOTO Hisaya HADAMA
A 10-Gbit/s-class ac-coupled average-detection-type burst-mode receiver (B-Rx) with an ultra fast response and a high tolerance to the long consecutive identical digits has been developed. Key features of the circuit design are the baseline-wander common-mode rejection technique and the inverted distortion technique adopted in the limiting amplifier to cope with both the fast response and the high tolerance. Our B-Rx with newly developed limiting amplifier IC achieved a settling time of less than 150 ns, a sensitivity of -29.8 dBm, and a dynamic range of 23.8 dB with a 231-1 pseudo random bit sequences. Moreover, we also describe several potential B-Rx applications. We achieved better performance by applying the proposed systems to our B-Rx.
Yuma KAWAMOTO Toki YOSHIOKA Norihiko SHIBATA Daniel HEADLAND Masayuki FUJITA Ryo KOMA Ryo IGARASHI Kazutaka HARA Jun-ichi KANI Tadao NAGATSUMA
We propose a novel silicon diplexer integrated with filters for frequency-division multiplexing in the 300-GHz band. The diplexer consists of a directional coupler formed of unclad silicon wires, a photonic bandgap-based low-pass filter, and a high-pass filter based on frequency-dependent bending loss. These integrated filters are capable of suppressing crosstalk and providing >15dB isolation over 40GHz, which is highly beneficial for terahertz-range wireless communications applications. We have used this diplexer in a simultaneous error-free wireless transmission of 300-GHz and 335-GHz channels at the aggregate data rate of 36Gbit/s.