1-3hit |
Kazuyuki SHIMEZAWA Hiroshi HARADA Hiroshi SHIRAI
We have developed a code-division-multiplexing (CDM) transmission scheme for future road-vehicle communication systems, which uses cyclic shifted-and-extended (CSE) codes generated from a basic code with superior auto-correlation characteristics. This paper proposes to use a Quasi-Orthogonal (QO) sequence as the basic code. Its auto-correlation values are zero except at zero and middle shifts. When the CDM transmission is performed by the CSE codes based on the QO sequence, a desired correlation value is, at a receiver, interfered by the auto-correlation value at middle shift. Therefore, an elimination technique for the interfered correlation value is proposed and realizes zero cross-correlation characteristics within the cyclical shift interval. The new CDM transmission scheme based on the proposed scheme is evaluated by computer simulations in terms of the bit-error-rate performance.
Kazuyuki SHIMEZAWA Hiroshi HARADA Hiroshi SHIRAI Masayuki FUJISE
In order to realize a future seamless high-speed road-vehicle communication system, we have proposed using code division multiplexing (CDM) radio transmission scheme by using cyclic shifted-and-extended (CSE) codes as spread codes. As the CSE codes are generated by cyclically shifting and extending a conventionally used code, the number of codes generated from a code is limited to the length of the shift interval and the tolerable period of delayed waves also depends on the length. In this paper, based on CSE codes, we propose a method to minimize the length of the shift interval and a cancellation technique with a simple calculation in order to eliminate the interference from delayed waves caused by the reduction of the length of shift interval. The concept and the BER performances in AWGN, two-paths, and multi-path fading environments are described in this paper. As a result, the maximum transmission rate of CSE-based-CDM transmission per one-code using the newly proposed transmission scheme is 3 times as large as that using conventional CSE codes and DQPSK-CDM transmission scheme.
Kazuyuki SHIMEZAWA Hiroshi HARADA Hiroshi SHIRAI
We have developed a code-division-multiplexing (CDM) transmission scheme for future cellular communication systems, which uses cyclic shifted-and-extended (CSE) codes generated from an M-sequence to enable seamless communication in highly mobile environments. Because the correlation characteristics of CSE codes are determined by the M-sequence, the cross-correlation values are accumulated as a result of combining transmitted signals with opposite polarities in parallel channels. The accumulated cross-correlation values significantly degrade transmission performance, especially with multi-level modulation schemes such as quadrature amplitude modulation (QAM). We thus propose a cancellation technique to eliminate the accumulated cross-correlation values. We have evaluated the transmission performance of the CDM transmission scheme with the proposed technique by computer simulation. The new scheme enables high-quality data transmission in fast-fading channels.