1-2hit |
Sila CHUNWIJITRA Phondanai KHANTI Supphachoke SUNTIWICHAYA Kamthorn KRAIRAKSA Pornchai TUMMARATTANANONT Marut BURANARACH Chai WUTIWIWATCHAI
Massive open online course (MOOC) is an online course aimed at unlimited participation and open access via the web. Although there are many MOOC providers, they typically focus on the online course providing and typically do not link with traditional education and business sector requirements. This paper presents a MOOC service framework that focuses on adopting MOOC to provide additional services to support students in traditional education and to provide credit bank consisting of student academic credentials for business sector demand. Particularly, it extends typical MOOC to support academic/ credential record and transcript issuance. The MOOC service framework consists of five layers: authentication, resources, learning, assessment and credential layers. We discuss the adoption of the framework in Thai MOOC, the national MOOC system for Thai universities. Several main issues related to the framework adoption are discussed, including the service strategy and model as well as infrastructure design for large-scale MOOC service.
Xianxu HOU Jiasong ZHU Ke SUN Linlin SHEN Guoping QIU
Motivated by the observation that certain convolutional channels of a Convolutional Neural Network (CNN) exhibit object specific responses, we seek to discover and exploit the convolutional channels of a CNN in which neurons are activated by the presence of specific objects in the input image. A method for explicitly fine-tuning a pre-trained CNN to induce object specific channel (OSC) and systematically identifying it for the human faces has been developed. In this paper, we introduce a multi-scale approach to constructing robust face heatmaps based on OSC features for rapidly filtering out non-face regions thus significantly improving search efficiency for face detection. We show that multi-scale OSC can be used to develop simple and compact face detectors in unconstrained settings with state of the art performance.