The search functionality is under construction.

Author Search Result

[Author] Kenta IWAI(4hit)

1-4hit
  • Speech Enhancement for Laser Doppler Vibrometer Dealing with Unknown Irradiated Objects

    Chengkai CAI  Kenta IWAI  Takanobu NISHIURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:4
      Page(s):
    647-656

    The acquisition of distant sound has always been a hot research topic. Since sound is caused by vibration, one of the best methods for measuring distant sound is to use a laser Doppler vibrometer (LDV). This laser has high directivity, that enables it to acquire sound from far away, which is of great practical use for disaster relief and other situations. However, due to the vibration characteristics of the irradiated object itself and the reflectivity of its surface (or other reasons), the acquired sound is often lacking frequency components in certain frequency bands and is mixed with obvious noise. Therefore, when using LDV to acquire distant speech, if we want to recognize the actual content of the speech, it is necessary to enhance the acquired speech signal in some way. Conventional speech enhancement methods are not generally applicable due to the various types of degradation in observed speech. Moreover, while several speech enhancement methods for LDV have been proposed, they are only effective when the irradiated object is known. In this paper, we present a speech enhancement method for LDV that can deal with unknown irradiated objects. The proposed method is composed of noise reduction, pitch detection, power spectrum envelope estimation, power spectrum reconstruction, and phase estimation. Experimental results demonstrate the effectiveness of our method for enhancing the acquired speech with unknown irradiated objects.

  • Acoustic Design Support System of Compact Enclosure for Smartphone Using Deep Neural Network

    Kai NAKAMURA  Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Engineering Acoustics

      Vol:
    E102-A No:12
      Page(s):
    1932-1939

    In this paper, we propose an automatic design support system for compact acoustic devices such as microspeakers inside smartphones. The proposed design support system outputs the dimensions of compact acoustic devices with the desired acoustic characteristic. This system uses a deep neural network (DNN) to obtain the relationship between the frequency characteristic of the compact acoustic device and its dimensions. The training data are generated by the acoustic finite-difference time-domain (FDTD) method so that many training data can be easily obtained. We demonstrate the effectiveness of the proposed system through some comparisons between desired and designed frequency characteristics.

  • Third-Order Nonlinear IIR Filter for Compensating Nonlinear Distortions of Loudspeaker Systems

    Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    820-832

    In this paper, we propose a 3rd-order nonlinear IIR filter for compensating nonlinear distortions of loudspeaker systems. Nonlinear distortions are common around the lowest resonance frequency for electrodynamic loudspeaker systems. One interesting approach to compensating nonlinear distortions is to employ a mirror filter. The mirror filter is derived from the nonlinear differential equation for loudspeaker systems. The nonlinear parameters of a loudspeaker system, which include the force factor, stiffness, and so forth, depend on the displacement of the diaphragm. The conventional filter structure, which is called the 2nd-order nonlinear IIR filter that originates the mirror filter, cannot reduce nonlinear distortions at high frequencies because it does not take into account the nonlinearity of the self-inductance of loudspeaker systems. To deal with this problem, the proposed filter takes into account the nonlinearity of the self-inductance and has a 3rd-order nonlinear IIR filter structure. Hence, this filter can reduce nonlinear distortions at high frequencies while maintaining a lower computational complexity than that of a Volterra filter-based compensator. Experimental results demonstrate that the proposed filter outperforms the conventional filter by more than 2dB for 2nd-order nonlinear distortions at high frequencies.

  • Parameter Estimation Method Using Volterra Kernels for Nonlinear IIR Filters

    Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:11
      Page(s):
    2189-2199

    In this paper, we propose a parameter estimation method using Volterra kernels for the nonlinear IIR filters, which are used for the linearization of closed-box loudspeaker systems. The nonlinear IIR filter, which originates from a mirror filter, employs nonlinear parameters of the loudspeaker system. Hence, it is very important to realize an appropriate estimation method for the nonlinear parameters to increase the compensation ability of nonlinear distortions. However, it is difficult to obtain exact nonlinear parameters using the conventional parameter estimation method for nonlinear IIR filter, which uses the displacement characteristic of the diaphragm. The conventional method has two problems. First, it requires the displacement characteristic of the diaphragm but it is difficult to measure such tiny displacements. Moreover, a laser displacement gauge is required as an extra measurement instrument. Second, it has a limitation in the excitation signal used to measure the displacement of the diaphragm. On the other hand, in the proposed estimation method for nonlinear IIR filter, the parameters are updated using simulated annealing (SA) according to the cost function that represents the amount of compensation and these procedures are repeated until a given iteration count. The amount of compensation is calculated through computer simulation in which Volterra kernels of a target loudspeaker system is utilized as the loudspeaker model and then the loudspeaker model is compensated by the nonlinear IIR filter with the present parameters. Hence, the proposed method requires only an ordinary microphone and can utilize any excitation signal to estimate the nonlinear parameters. Some experimental results demonstrate that the proposed method can estimate the parameters more accurately than the conventional estimation method.