The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Koki TSUBOTA(3hit)

1-3hit
  • Quality Enhancement of Conventional Compression with a Learned Side Bitstream

    Takahiro NARUKO  Hiroaki AKUTSU  Koki TSUBOTA  Kiyoharu AIZAWA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/04/25
      Vol:
    E106-D No:8
      Page(s):
    1296-1299

    We propose Quality Enhancement via a Side bitstream Network (QESN) technique for lossy image compression. The proposed QESN utilizes the network architecture of deep image compression to produce a bitstream for enhancing the quality of conventional compression. We also present a loss function that directly optimizes the Bjontegaard delta bit rate (BD-BR) by using a differentiable model of a rate-distortion curve. Experimental results show that QESN improves the rate by 16.7% in the BD-BR compared to Better Portable Graphics.

  • Content-Adaptive Optimization Framework for Universal Deep Image Compression

    Koki TSUBOTA  Kiyoharu AIZAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/10/24
      Vol:
    E107-D No:2
      Page(s):
    201-211

    While deep image compression performs better than traditional codecs like JPEG on natural images, it faces a challenge as a learning-based approach: compression performance drastically decreases for out-of-domain images. To investigate this problem, we introduce a novel task that we call universal deep image compression, which involves compressing images in arbitrary domains, such as natural images, line drawings, and comics. Furthermore, we propose a content-adaptive optimization framework to tackle this task. This framework adapts a pre-trained compression model to each target image during testing for addressing the domain gap between pre-training and testing. For each input image, we insert adapters into the decoder of the model and optimize the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion, with the adapter parameters transmitted per image. To achieve the evaluation of the proposed universal deep compression, we constructed a benchmark dataset containing uncompressed images of four domains: natural images, line drawings, comics, and vector arts. We compare our proposed method with non-adaptive and existing adaptive compression methods, and the results show that our method outperforms them. Our code and dataset are publicly available at https://github.com/kktsubota/universal-dic.

  • Evaluating the Stability of Deep Image Quality Assessment with Respect to Image Scaling

    Koki TSUBOTA  Hiroaki AKUTSU  Kiyoharu AIZAWA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/07/25
      Vol:
    E105-D No:10
      Page(s):
    1829-1833

    Image quality assessment (IQA) is a fundamental metric for image processing tasks (e.g., compression). With full-reference IQAs, traditional IQAs, such as PSNR and SSIM, have been used. Recently, IQAs based on deep neural networks (deep IQAs), such as LPIPS and DISTS, have also been used. It is known that image scaling is inconsistent among deep IQAs, as some perform down-scaling as pre-processing, whereas others instead use the original image size. In this paper, we show that the image scale is an influential factor that affects deep IQA performance. We comprehensively evaluate four deep IQAs on the same five datasets, and the experimental results show that image scale significantly influences IQA performance. We found that the most appropriate image scale is often neither the default nor the original size, and the choice differs depending on the methods and datasets used. We visualized the stability and found that PieAPP is the most stable among the four deep IQAs.