1-3hit |
Takeshi KUROSAKI Toshikazu HASHIMOTO Noboru ISHIHARA Yasuhiro SUZUKI Masahiro YANAGISAWA Hideaki KIMURA Makoto NAKAMURA Yuichi TOHMORI Kazutoshi KATO Yoshihiro KAWAGUCHI Yuji AKAHORI Yasufumi YAMADA Kuniharu KATO Hiromu TOBA Junichi YOSHIDA
This paper describes design techniques for suppressing crosstalk in an optical transceiver module using PLC-hybrid-integration technologies and for achieving burst-mode operation with high sensitivity and wide dynamic range using CMOS-IC technologies. An arrangement that reduces the electrical crosstalk to less than -100 dB was designed using three-dimensional electromagnetic field analysis. The configurations of a newly developed instantaneous-response CMOS LD driver circuit is also described and instantaneous-response CMOS receiver circuit techniques are reviewed. With these techniques, we have succeeded in building optical transceiver modules for ATM-PON systems using PLC-hybrid-integration and inexpensive standard CMOS-IC fabrication processes. Under full-duplex operation at 156 Mb/s, fabricated transceiver modules showed receiver sensitivity of better than -34 dBm and dynamic range of over 28 dB, which satisfy both the class-B and class-C specifications recommended by ITU-T (International Telecommunication Union-Telecommunication standardization sector) G983.1 for the optical transceiver module for an ONU (optical network unit).
Yasuyuki INOUE Kuniharu KATO Katsunari OKAMOTO Yasuji OHMORI
Silica-based planar lightwave circuits (PLCs) are reviewed in terms of WDM applications. Four types of basic multiplexer are described and compared. Some topical applications of these multiplexers are introduced with their WDM systems. We conclude that because of these various applications, silica-based PLCs will play an important role in future WDM systems.
Takeshi KUROSAKI Toshikazu HASHIMOTO Noboru ISHIHARA Yasuhiro SUZUKI Masahiro YANAGISAWA Hideaki KIMURA Makoto NAKAMURA Yuichi TOHMORI Kazutoshi KATO Yoshihiro KAWAGUCHI Yuji AKAHORI Yasufumi YAMADA Kuniharu KATO Hiromu TOBA Junichi YOSHIDA
This paper describes design techniques for suppressing crosstalk in an optical transceiver module using PLC-hybrid-integration technologies and for achieving burst-mode operation with high sensitivity and wide dynamic range using CMOS-IC technologies. An arrangement that reduces the electrical crosstalk to less than -100 dB was designed using three-dimensional electromagnetic field analysis. The configurations of a newly developed instantaneous-response CMOS LD driver circuit is also described and instantaneous-response CMOS receiver circuit techniques are reviewed. With these techniques, we have succeeded in building optical transceiver modules for ATM-PON systems using PLC-hybrid-integration and inexpensive standard CMOS-IC fabrication processes. Under full-duplex operation at 156 Mb/s, fabricated transceiver modules showed receiver sensitivity of better than -34 dBm and dynamic range of over 28 dB, which satisfy both the class-B and class-C specifications recommended by ITU-T (International Telecommunication Union-Telecommunication standardization sector) G983.1 for the optical transceiver module for an ONU (optical network unit).