1-2hit |
Keiichiro TOUNAI Kunihiko KASAMA
Optical parameters of KrF excimer laser stepper are optimized for 0.25 µm level patterning by means of a light intensity simulation method. The light intensity simulation method is applied conventional and two modified illuminations (annular and 4-point) to improve the depth of focus (DOF) at 0.25 µm periodic lines and spaces pattern (L&S). Simulation results obtained are; (1) the DOF of conventional illumination is not sufficient even in the optimum condition (NA=0.5, σ=0.8), (2) more than 1.5 µm DOF could be achieved with an annular illumination, if present resist performance is improved slightly, and (3) wider DOF is obtained in the case of with 4-point illumination. However, the DOF is rather degraded in the specific sized (near double/triple sized) region and oblique pattern, therefore the application of this illumination is restricted into some specific mask layout pattern.
Mototaka KAMOSHIDA Hirotomo INUI Toshiyuki OHTA Kunihiko KASAMA
The scaling laws between the design rules and the smallest sizes and numbers of particles capable of causing pattern defects and scrapping dies in semiconductor device manufacturing are described. Simulation with electromagnetic waveguide model indicates the possibility that particles, the sizes of which are of comparable order or even smaller than the wavelength of the lithography irradiation sources, are capable of causing pattern defects. For example, in the future 0.25 µm-design-rule era, the critical sizes of Si, Al, and SiO2 particles are simulated as 120 nm 120 nm, 120 nm 120 nm, and 560 nm 560 nm, respectively, in the case of 0.7 µm-thick chemically-amplified positive photoresist with 47 nm-thick top anti-reflective coating films. Future giga-scale integration era is also predicted.