The search functionality is under construction.

Author Search Result

[Author] Li HAO(5hit)

1-5hit
  • Generalized Orthogonal Sequences and Their Applications in Synchronous CDMA Systems

    Pingzhi FAN  Li HAO  

     
    INVITED PAPER

      Vol:
    E83-A No:11
      Page(s):
    2054-2069

    In synchronous CDMA system, the orthogonal spreading sequences are employed to reduce the multiple access interference. However, as the frequency selectivity of the propagation channel strengthens, the orthogonality among different users tends to diminish because of increasing inter-path interference. In this paper, various binary and nonbinary orthogonal sequences are discussed. In order to maintain the orthogonality among different users, a new concept of generalized orthogonality is defined and the corresponding sequences are presented, including binary, quadriphase and nonbinary code sequences. Based on a simplified synchronous CDMA system model, the related system performance is also analyzed and compared for different orthogonal and generalized orthogonal spreading sequences. Our analytical and simulation results show that the generalized orthogonal code sequences are indeed more robust in the multipath propagation channels, compared with the traditional orthogonal code sequences.

  • Construction of Binary Array Set with Zero Correlation Zone Based on Interleaving Technique

    Yifeng TU  Pingzhi FAN  Li HAO  Xiyang LI  

     
    PAPER-Information Theory

      Vol:
    E94-A No:2
      Page(s):
    766-772

    Sequences with good correlation properties are of substantial interest in many applications. By interleaving a perfect array with shift sequences, a new method of constructing binary array set with zero correlation zone (ZCZ) is presented. The interleaving operation can be performed not only row-by-row but also column-by-column on the perfect array. The resultant ZCZ binary array set is optimal or almost optimal with respect to the theoretical bound. The new method provides a flexible choice for the rectangular ZCZ and the set size.

  • Quadriphase Z-Complementary Sequences

    Xudong LI  Pingzhi FAN  Xiaohu TANG  Li HAO  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2251-2257

    Aperiodic quadriphase Z-complementary sequences, which include the conventional complementary sequences as special cases, are introduced. It is shown that, the aperiodic quadriphase Z-complementary pairs are normally better than binary ones of the same length, in terms of the number of Z-complementary pairs, and the maximum zero correlation zone. New notions of elementary transformations on quadriphase sequences and elementary operations on sets of quadriphase Z-complementary sequences are presented. In particular, new methods for analyzing the relations among the formulas relative to sets of quadriphase Z-complementary sequences and for describing the sets are proposed. The existence problem of Z-complementary pairs of quadriphase sequences with zero correlation zone equal to 2, 3, and 4 is investigated. Constructions of sets of quadriphase Z-complementary sequences and their mates are given.

  • Performance Evaluation for a New Quasi-Synchronous CDMA System Employing Generalized Orthogonal Sequences

    Li HAO  Pingzhi FAN  

     
    PAPER-Networking and Architectures

      Vol:
    E86-D No:9
      Page(s):
    1513-1524

    In this paper, a quasi-synchronous code-division multiple-access (QS-CDMA) is investigated for application in the reverse link of a microcellular or indoor mobile communication environment. In a QS-CDMA system, the relative time delay between the signals of different users is normally restricted within a few chips. Generalized orthogonal (GO) codes added with guard chips are employed as the spreading sequences in this paper and the strict timing error restrictions for BPSK and M-QAM modulation schemes are derived based on the correlation properties of GO code set which determines the multiple access interference (MAI). The results reveal that the system employing GO code set with bigger GO zone can tolerate more serious timing error, and higher order modulation schemes require stricter synchronization. Based on the system model presented, the BER performance for BPSK and M-QAM is evaluated by Gaussian Approximation (GA) and Monte Carlo simulation. The system capacity in terms of acquirable total bit rates are also evaluated, revealing that if system synchronization error is limited within the GO zone, M-QAM scheme can be utilized to improve the system capacity.

  • A Downlink Multi-Relay Transmission Scheme Employing Tomlinson-Harashima Precoding and Interference Alignment

    Heng LIU  Pingzhi FAN  Li HAO  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1904-1911

    This paper proposes a downlink multi-user transmission scheme for the amplify-and-forward(AF)-based multi-relay cellular network, in which Tomlinson-Harashima precoding(TH precoding) and interference alignment(IA) are jointly applied. The whole process of transmission is divided into two phases: TH precoding is first performed at base-station(BS) to support the multiplexing of data streams transmitted to both mobile-stations(MS) and relay-stations(RS), and then IA is performed at both BS and RSs to achieve the interference-free communication. During the whole process, neither data exchange nor strict synchronization is required among BS and RSs thus reducing the cooperative complexity as well as improving the system performance. Theoretical analysis is provided with respect to the channel capacity of different types of users, resulting the upper-bounds of channel capacity. Our analysis and simulation results show that the joint applications of TH precoding and IA outperforms other schemes in the presented multi-relay cellular network.