1-5hit |
Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.
In this study, we propose a simple, yet general and powerful framework for constructing accurate affine invariant regions. In our framework, a method for extracting reliable seed points is first proposed. Then, regions which are invariant to most common affine transformations can be extracted from seed points by two new methods the Path Growing (PG) or the Thresholding Seeded Growing Region (TSGR). After that, an improved ellipse fitting method based on the Direct Least Square Fitting (DLSF) is used to fit the irregularly-shaped contours from the PG or the TSGR to obtain ellipse regions as the final invariant regions. In the experiments, our framework is first evaluated by the criterions of Mikolajczyk's evaluation framework [1], and then by near-duplicate detection problem [2]. Our framework shows its superiorities to the other detectors for different transformed images under Mikolajczyk's evaluation framework and the one with TSGR also gives satisfying results in the application to near-duplicate detection problem.
Li TIAN Qi JIA Sei-ichiro KAMATA
In this study, we propose a simple, yet general and powerful framework of integrating multiple global and local features by Product Sparse Coding (PSC) for image retrieval. In our framework, multiple global and local features are extracted from images and then are transformed to Trimmed-Root (TR)-features. After that, the features are encoded into compact codes by PSC. Finally, a two-stage ranking strategy is proposed for indexing in retrieval. We make three major contributions in this study. First, we propose TR representation of multiple image features and show that the TR representation offers better performance than the original features. Second, the integrated features by PSC is very compact and effective with lower complexity than by the standard sparse coding. Finally, the two-stage ranking strategy can balance the efficiency and memory usage in storage. Experiments demonstrate that our compact image representation is superior to the state-of-the-art alternatives for large-scale image retrieval.
Li TIAN Sei-ichiro KAMATA Kazuyuki TSUNEYOSHI Haijiang TANG
To find the best transformation between a "model" point set and an "image" point set is the main purpose of point pattern matching. The similarity measure plays a pivotal role and is used to determine the degree of resemblance between two objects. Although some well-known Hausdorff distance measures work well for this task, they are very computationally expensive and suffer from the noise points. In this paper, we propose a novel similarity measure using the Hilbert curve named Hilbert scanning distance (HSD) to resolve the problems. This method computes the distance measure in the one-dimensional (1-D) sequence instead of in the two-dimensional (2-D) space, which greatly reduces the computational complexity. By applying a threshold elimination function, large distance values caused by noise and position errors (e.g. those that occur with feature or edge extraction) are removed. The proposed algorithm has been applied to the task of matching edge maps with noise. The experimental results show that HSD can provide sufficient information for image matching within low computational complexity. We believe this sets a new direction for the research of point pattern recognition.
Image enhancement plays an important role in many machine vision applications on images captured in low contrast and low illumination conditions. In this study, we propose a new method for image enhancement based on analysis on embedded surfaces of images. The proposed method gives an insight into the relationship between the image intensity and image enhancement. In our method, scaled surface area and the surface volume are proposed and used to reconstruct the image iteratively for contrast enhancement, and the illumination of the reconstructed image can also be adjusted simultaneously. On the other hand, the most common methods for measuring the quality of enhanced images are Mean Square Error (MSE) or Peak Signal-to-Noise-Ratio (PSNR) in conventional works. The two measures have been recognized as inadequate ones because they do not evaluate the result in the way that the human vision system does. This paper also presents a new framework for evaluating image enhancement using both objective and subjective measures. This framework can also be used for other image quality evaluations such as denoising evaluation. We compare our enhancement method with some well-known enhancement algorithms, including wavelet and curvelet methods, using the new evaluation framework. The results show that our method can give better performance in most objective and subjective criteria than the conventional methods.