Image enhancement plays an important role in many machine vision applications on images captured in low contrast and low illumination conditions. In this study, we propose a new method for image enhancement based on analysis on embedded surfaces of images. The proposed method gives an insight into the relationship between the image intensity and image enhancement. In our method, scaled surface area and the surface volume are proposed and used to reconstruct the image iteratively for contrast enhancement, and the illumination of the reconstructed image can also be adjusted simultaneously. On the other hand, the most common methods for measuring the quality of enhanced images are Mean Square Error (MSE) or Peak Signal-to-Noise-Ratio (PSNR) in conventional works. The two measures have been recognized as inadequate ones because they do not evaluate the result in the way that the human vision system does. This paper also presents a new framework for evaluating image enhancement using both objective and subjective measures. This framework can also be used for other image quality evaluations such as denoising evaluation. We compare our enhancement method with some well-known enhancement algorithms, including wavelet and curvelet methods, using the new evaluation framework. The results show that our method can give better performance in most objective and subjective criteria than the conventional methods.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Li TIAN, Sei-ichiro KAMATA, "Image Enhancement by Analysis on Embedded Surfaces of Images and a New Framework for Enhancement Evaluation" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 7, pp. 1946-1954, July 2008, doi: 10.1093/ietisy/e91-d.7.1946.
Abstract: Image enhancement plays an important role in many machine vision applications on images captured in low contrast and low illumination conditions. In this study, we propose a new method for image enhancement based on analysis on embedded surfaces of images. The proposed method gives an insight into the relationship between the image intensity and image enhancement. In our method, scaled surface area and the surface volume are proposed and used to reconstruct the image iteratively for contrast enhancement, and the illumination of the reconstructed image can also be adjusted simultaneously. On the other hand, the most common methods for measuring the quality of enhanced images are Mean Square Error (MSE) or Peak Signal-to-Noise-Ratio (PSNR) in conventional works. The two measures have been recognized as inadequate ones because they do not evaluate the result in the way that the human vision system does. This paper also presents a new framework for evaluating image enhancement using both objective and subjective measures. This framework can also be used for other image quality evaluations such as denoising evaluation. We compare our enhancement method with some well-known enhancement algorithms, including wavelet and curvelet methods, using the new evaluation framework. The results show that our method can give better performance in most objective and subjective criteria than the conventional methods.
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.7.1946/_p
Copy
@ARTICLE{e91-d_7_1946,
author={Li TIAN, Sei-ichiro KAMATA, },
journal={IEICE TRANSACTIONS on Information},
title={Image Enhancement by Analysis on Embedded Surfaces of Images and a New Framework for Enhancement Evaluation},
year={2008},
volume={E91-D},
number={7},
pages={1946-1954},
abstract={Image enhancement plays an important role in many machine vision applications on images captured in low contrast and low illumination conditions. In this study, we propose a new method for image enhancement based on analysis on embedded surfaces of images. The proposed method gives an insight into the relationship between the image intensity and image enhancement. In our method, scaled surface area and the surface volume are proposed and used to reconstruct the image iteratively for contrast enhancement, and the illumination of the reconstructed image can also be adjusted simultaneously. On the other hand, the most common methods for measuring the quality of enhanced images are Mean Square Error (MSE) or Peak Signal-to-Noise-Ratio (PSNR) in conventional works. The two measures have been recognized as inadequate ones because they do not evaluate the result in the way that the human vision system does. This paper also presents a new framework for evaluating image enhancement using both objective and subjective measures. This framework can also be used for other image quality evaluations such as denoising evaluation. We compare our enhancement method with some well-known enhancement algorithms, including wavelet and curvelet methods, using the new evaluation framework. The results show that our method can give better performance in most objective and subjective criteria than the conventional methods.},
keywords={},
doi={10.1093/ietisy/e91-d.7.1946},
ISSN={1745-1361},
month={July},}
Copy
TY - JOUR
TI - Image Enhancement by Analysis on Embedded Surfaces of Images and a New Framework for Enhancement Evaluation
T2 - IEICE TRANSACTIONS on Information
SP - 1946
EP - 1954
AU - Li TIAN
AU - Sei-ichiro KAMATA
PY - 2008
DO - 10.1093/ietisy/e91-d.7.1946
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2008
AB - Image enhancement plays an important role in many machine vision applications on images captured in low contrast and low illumination conditions. In this study, we propose a new method for image enhancement based on analysis on embedded surfaces of images. The proposed method gives an insight into the relationship between the image intensity and image enhancement. In our method, scaled surface area and the surface volume are proposed and used to reconstruct the image iteratively for contrast enhancement, and the illumination of the reconstructed image can also be adjusted simultaneously. On the other hand, the most common methods for measuring the quality of enhanced images are Mean Square Error (MSE) or Peak Signal-to-Noise-Ratio (PSNR) in conventional works. The two measures have been recognized as inadequate ones because they do not evaluate the result in the way that the human vision system does. This paper also presents a new framework for evaluating image enhancement using both objective and subjective measures. This framework can also be used for other image quality evaluations such as denoising evaluation. We compare our enhancement method with some well-known enhancement algorithms, including wavelet and curvelet methods, using the new evaluation framework. The results show that our method can give better performance in most objective and subjective criteria than the conventional methods.
ER -