The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ling YANG(5hit)

1-5hit
  • Anticontrol of Chaos for Continuous-Time Systems

    Guanrong CHEN  Ling YANG  Zengrong LIU  

     
    LETTER

      Vol:
    E85-A No:6
      Page(s):
    1333-1335

    This paper studies the anticontrol problem of making a continuous-time system chaotic by using impulsive control. The controller is designed to ensure the controlled orbit be bounded and, meanwhile, the controlled system have positive Lyapunov exponents, which are achieved near a stable limit cycle of the system. One illustrative example is given.

  • An Optimized Level Set Method Based on QPSO and Fuzzy Clustering

    Ling YANG  Yuanqi FU  Zhongke WANG  Xiaoqiong ZHEN  Zhipeng YANG  Xingang FAN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/02/12
      Vol:
    E102-D No:5
      Page(s):
    1065-1072

    A new fuzzy level set method (FLSM) based on the global search capability of quantum particle swarm optimization (QPSO) is proposed to improve the stability and precision of image segmentation, and reduce the sensitivity of initialization. The new combination of QPSO-FLSM algorithm iteratively optimizes initial contours using the QPSO method and fuzzy c-means clustering, and then utilizes level set method (LSM) to segment images. The new algorithm exploits the global search capability of QPSO to obtain a stable cluster center and a pre-segmentation contour closer to the region of interest during the iteration. In the implementation of the new method in segmenting liver tumors, brain tissues, and lightning images, the fitness function of the objective function of QPSO-FLSM algorithm is optimized by 10% in comparison to the original FLSM algorithm. The achieved initial contours from the QPSO-FLSM algorithm are also more stable than that from the FLSM. The QPSO-FLSM resulted in improved final image segmentation.

  • An Extreme Learning Machine Architecture Based on Volterra Filtering and PCA

    Li CHEN  Ling YANG  Juan DU  Chao SUN  Shenglei DU  Haipeng XI  

     
    PAPER-Information Network

      Pubricized:
    2017/08/02
      Vol:
    E100-D No:11
      Page(s):
    2690-2701

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. However, it has a linear output layer which may limit the capability of exploring the available information, since higher-order statistics of the signals are not taken into account. To address this, we propose a novel ELM architecture in which the linear output layer is replaced by a Volterra filter structure. Additionally, the principal component analysis (PCA) technique is used to reduce the number of effective signals transmitted to the output layer. This idea not only improves the processing capability of the network, but also preserves the simplicity of the training process. Then we carry out performance evaluation and application analysis for the proposed architecture in the context of supervised classification and unsupervised equalization respectively, and the obtained results either on publicly available datasets or various channels, when compared to those produced by already proposed ELM versions and a state-of-the-art algorithm: support vector machine (SVM), highlight the adequacy and the advantages of the proposed architecture and characterize it as a promising tool to deal with signal processing tasks.

  • Blind Source Separation and Equalization Based on Support Vector Regression for MIMO Systems

    Chao SUN  Ling YANG  Juan DU  Fenggang SUN  Li CHEN  Haipeng XI  Shenglei DU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    698-708

    In this paper, we first propose two batch blind source separation and equalization algorithms based on support vector regression (SVR) for linear time-invariant multiple input multiple output (MIMO) systems. The proposed algorithms combine the conventional cost function of SVR with error functions of classical on-line algorithm for blind equalization: both error functions of constant modulus algorithm (CMA) and radius directed algorithm (RDA) are contained in the penalty term of SVR. To recover all sources simultaneously, the cross-correlations of equalizer outputs are included in the cost functions. Simulation experiments show that the proposed algorithms can recover all sources successfully and compensate channel distortion simultaneously. With the use of iterative re-weighted least square (IRWLS) solution of SVR, the proposed algorithms exhibit low computational complexity. Compared with traditional algorithms, the new algorithms only require fewer samples to achieve convergence and perform a lower residual interference. For multilevel signals, the single algorithms based on constant modulus property usually show a relatively high residual error, then we propose two dual-mode blind source separation and equalization schemes. Between them, the dual-mode scheme based on SVR merely requires fewer samples to achieve convergence and further reduces the residual interference.

  • Parallel Test Structure in Latch Based Asynchronous Pipeline

    Jing-ling YANG  Chiu-sing CHOY  Cheong-Fat CHAN  

     
    LETTER

      Vol:
    E82-A No:11
      Page(s):
    2527-2529

    Detecting the stuck-at-pass faults in the event-driven latches is the main difficult in testing latch based asynchronous pipeline. In this paper we proposed a parallel test structure to ease this problem.