The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Makoto KOBAYASHI(2hit)

1-2hit
  • Precise Indoor Localization Method Using Dual-Facing Cameras on a Smart Device via Visible Light Communication

    Yohei NAKAZAWA  Hideo MAKINO  Kentaro NISHIMORI  Daisuke WAKATSUKI  Makoto KOBAYASHI  Hideki KOMAGATA  

     
    PAPER-Vision

      Vol:
    E100-A No:11
      Page(s):
    2295-2303

    In this paper, we propose a precise indoor localization method using visible light communication (VLC) with dual-facing cameras on a smart device (mobile phone, smartphone, or tablet device). This approach can assist the visually impaired with navigation, or provide mobile-robot control. The proposed method is different from conventional techniques in that dual-facing cameras are used to expand the localization area. The smart device is used as the receiver, and light-emitting diodes on the ceiling are used as localization landmarks. These are identified by VLC using a rolling shutter effect of complementary metal-oxide semiconductor image sensors. The front-facing camera captures the direct incident light of the landmarks, while the rear-facing camera captures mirror images of landmarks reflected from the floor face. We formulated the relationship between the poses (position and attitude) of the two cameras and the arrangement of landmarks using tilt detection by the smart device accelerometer. The equations can be analytically solved with a constant processing time, unlike conventional numerical methods, such as least-squares. We conducted a simulation and confirmed that the localization area was 75.6% using the dual-facing cameras, which was 3.8 times larger than that using only the front-facing camera. As a result of the experiment using two landmarks and a tablet device, the localization error in the horizontal direction was less than 98 mm at 90% of the measurement points. Moreover, the error estimation index can be used for appropriate route selection for pedestrians.

  • Accurate Q-Factor Evaluation by Resonance Curve Area Method and Its Application to the Cavity Perturbation

    Taro MIURA  Takeshi TAKAHASHI  Makoto KOBAYASHI  

     
    PAPER

      Vol:
    E77-C No:6
      Page(s):
    900-907

    An improvement of Q evaluation is discussed. The Resonance Curve Area method was confirmed to give a deviation in the order of 6104. The result was three times more accurate than the widely known Q evaluating method which utilizes the cursor function installed in a network analyzer. A discussion is also made on the physical validity of the RCA method. It is shown that the application of the RCA method improves the accuracy of the cavity perturbation method. Actual measurements have shown that the deviation of dielectric constant is less than 1% and that of the loss tangent is less than 3%, in the order of 104. The accuracy of the RCA method was estimated to be three times that of the conventional cavity perturbation technique. The consistency of the perturbation with other methods has also confirmed. The accuracy comparison to more accurate formulae derived from a rigorous solution have shown that the difference is sufficiently small.