The search functionality is under construction.

Author Search Result

[Author] Makoto TAKITA(10hit)

1-10hit
  • Coded Caching for Hierarchical Networks with a Different Number of Layers

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding theory and techniques

      Vol:
    E101-A No:12
      Page(s):
    2037-2046

    The network load is increasing due to the spread of content distribution services. Caching is known as a technique to reduce a peak network load by prefetching popular contents into memories of users. Coded caching is a new caching approach based on a carefully designed content placement in order to create coded multicasting opportunities. Recent works have discussed single-layer caching systems, but many networks consist of multiple layers of cache. In this paper, we discuss a coded caching problem for a hierarchical network that has a different number of layers of cache. The network has users who connect to an origin server via a mirror server and users who directly connect to the origin server. We provide lower bounds of the rates for this problem setting based on the cut-set bound. In addition, we propose three basic coded caching schemes and characterize these schemes. Also, we propose a new coded caching scheme by combining two basic schemes and provide achievable rates of the combination coded caching scheme. Finally, we show that the proposed combination scheme demonstrates a good performance by a numerical result.

  • A Decoding Algorithm for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:12
      Page(s):
    2415-2422

    Cassuto and Blaum presented a new coding framework for channels whose outputs are overlapping pairs of symbols in storage applications. Such channels are called symbol-pair read channels. Pair distance and pair error are used in symbol-pair read channels. Yaakobi et al. proved a lower bound on the minimum pair distance of cyclic codes. Furthermore, they provided a decoding algorithm for correcting pair errors using a decoder for cyclic codes, and showed the number of pair errors that can be corrected by their algorithm. However, their algorithm cannot correct all pair error vectors within half of the minimum pair distance. In this paper, we propose an efficient decoding algorithm for cyclic codes over symbol-pair read channels. It is based on the relationship between pair errors and syndromes. In addition, we show that the proposed algorithm can correct more pair errors than Yaakobi's algorithm.

  • A Construction of Binary Punctured Linear Codes and A Supporting Method for Best Code Search Open Access

    Takuya OHARA  Makoto TAKITA  Masakatu MORII  

     
    PAPER-Coding Theory

      Pubricized:
    2021/09/14
      Vol:
    E105-A No:3
      Page(s):
    372-380

    Reduction of redundancy and improvement of error-correcting capability are essential research themes in the coding theory. The best known codes constructed in various ways are recorded in a database maintained by Markus Grassl. In this paper, we propose an algorithm to construct the best code using punctured codes and a supporting method for constructing the best codes. First, we define a new evaluation function to determine deletion bits and propose an algorithm for constructing punctured linear codes. 27 new best codes were constructed in the proposed algorithm, and 112 new best codes were constructed by further modifying those best codes. Secondly, we evaluate the possibility of increasing the minimum distance based on the relationship between code length, information length, and minimum distance. We narrowed down the target (n, k) code to try the best code search based on the evaluation and found 28 new best codes. We also propose a method to rapidly derive the minimum weight of the modified cyclic codes. A cyclic code loses its cyclic structure when it is modified, so we extend the k-sparse algorithm to use it for modified cyclic codes as well. The extended k-sparse algorithm is used to verify our newly constructed best code.

  • Partition-then-Overlap Method for Labeling Cyber Threat Intelligence Reports by Topics over Time

    Ryusei NAGASAWA  Keisuke FURUMOTO  Makoto TAKITA  Yoshiaki SHIRAISHI  Takeshi TAKAHASHI  Masami MOHRI  Yasuhiro TAKANO  Masakatu MORII  

     
    LETTER

      Pubricized:
    2021/02/24
      Vol:
    E104-D No:5
      Page(s):
    556-561

    The Topics over Time (TOT) model allows users to be aware of changes in certain topics over time. The proposed method inputs the divided dataset of security blog posts based on a fixed period using an overlap period to the TOT. The results suggest the extraction of topics that include malware and attack campaign names that are appropriate for the multi-labeling of cyber threat intelligence reports.

  • Algebraic Decoding of BCH Codes over Symbol-Pair Read Channels: Cases of Two-Pair and Three-Pair Error Correction

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E99-A No:12
      Page(s):
    2179-2191

    In this paper, we discuss an algebraic decoding of BCH codes over symbol-pair read channels. The channels output overlapping pairs of symbols in storage applications. The pair distance and pair error are used in the channels. We define a polynomial that represents the positions of the pair errors as the error-locator polynomials and a polynomial that represents the positions of the pairs of a received pair vector in conflict as conflict-locator polynomial. In this paper, we propose algebraic methods for correcting two-pair and three-pair errors for BCH codes. First, we show the relation between the error-locator polynomials and the conflict-locator polynomial. Second, we show the relation among these polynomials and the syndromes. Finally, we provide how to correct the pair errors by solving equations including the relational expression by algebraic methods.

  • Syndrome Decoding of Symbol-Pair Codes

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:12
      Page(s):
    2423-2428

    Cassuto and Blaum proposed new error correcting codes which are called symbol-pair codes. They presented a coding framework for channels whose outputs are overlapping pairs of symbols in storage applications. Such channels are called symbol-pair read channels. The pair distance and pair error are used in symbol-pair read channels. Cassuto et al. and Yaakobi et al. presented decoding algorithms for symbol-pair codes. However, their decoding algorithms cannot always correct errors whose number is not more than half the minimum pair distance. In this paper, we propose a new decoding algorithm using syndromes of symbol-pair codes. In addition, we show that the proposed algorithm can correct all pair errors within the pair error correcting capability.

  • Error-Trapping Decoding for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2578-2584

    Symbol-pair read channels output overlapping pairs of symbols in storage applications. Pair distance and pair error are used in the channels. In this paper, we discuss error-trapping decoding for cyclic codes over symbol-pair read channels. By putting some restrictions on the correctable pair error patterns, we propose a novel error-trapping decoding algorithm over the channels and show a circuitry for implementing the decoding algorithm. In addition, we discuss how to modify the restrictions on the correctable pair error patterns.

  • Authentication Scheme Using Pre-Registered Information on Blockchain

    Toshiki TSUCHIDA  Makoto TAKITA  Yoshiaki SHIRAISHI  Masami MOHRI  Yasuhiro TAKANO  Masakatu MORII  

     
    LETTER-System Construction Techniques

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1676-1678

    In the context of Cyber-Physical System (CPS), analyzing the real world data accumulated in cyberspace would improve the efficiency and productivity of various social systems. Towards establishing data-driven society, it is desired to share data safely and smoothly among multiple services. In this paper, we propose a scheme that services authenticate users using information registered on a blockchain. We show that the proposed scheme has resistance to tampering and a spoofing attack.

  • Character-Level Convolutional Neural Network for Predicting Severity of Software Vulnerability from Vulnerability Description

    Shunta NAKAGAWA  Tatsuya NAGAI  Hideaki KANEHARA  Keisuke FURUMOTO  Makoto TAKITA  Yoshiaki SHIRAISHI  Takeshi TAKAHASHI  Masami MOHRI  Yasuhiro TAKANO  Masakatu MORII  

     
    LETTER-Cybersecurity

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1679-1682

    System administrators and security officials of an organization need to deal with vulnerable IT assets, especially those with severe vulnerabilities, to minimize the risk of these vulnerabilities being exploited. The Common Vulnerability Scoring System (CVSS) can be used as a means to calculate the severity score of vulnerabilities, but it currently requires human operators to choose input values. A word-level Convolutional Neural Network (CNN) has been proposed to estimate the input parameters of CVSS and derive the severity score of vulnerability notes, but its accuracy needs to be improved further. In this paper, we propose a character-level CNN for estimating the severity scores. Experiments show that the proposed scheme outperforms conventional one in terms of accuracy and how errors occur.

  • Coded Caching in Multi-Rate Wireless Networks Open Access

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E103-A No:12
      Page(s):
    1347-1355

    The network load is increasing due to the spread of content distribution services. Caching is recognized as a technique to reduce the peak network load by storing popular content into memories of users. Coded caching is a new caching approach based on a carefully designed content placement to create coded multicasting opportunities. Coded caching schemes in single-rate networks are evaluated by the tradeoff between the size of memory and that of delivered data. For considering the network with multiple transmission rates, it is crucial how to operate multicast. In multicast delivery, a sender must communicate to intended receivers at a rate that is available to all receivers. Multicast scheduling method of determining rates to deliver are evaluated by throughput and delay in multi-rate wireless networks. In this paper, we discuss coded caching in the multi-rate wireless networks. We newly define a measure for evaluating the coded caching scheme as coded caching delay and propose a new coded caching scheme. Also, we compare the proposed coded caching scheme with conventional coded caching schemes and show that the proposed scheme is suitable for multi-rate wireless networks.