The search functionality is under construction.

Author Search Result

[Author] Masanori HIROTOMO(13hit)

1-13hit
  • A Method for Computing the Weight Spectrum of LDPC Convolutional Codes Based on Circulant Matrices

    Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E97-A No:12
      Page(s):
    2300-2308

    In this paper, we propose an efficient method for computing the weight spectrum of LDPC convolutional codes based on circulant matrices of quasi-cyclic codes. In the proposed method, we reduce the memory size of their parity-check matrices with the same distance profile as the original codes, and apply a forward and backward tree search algorithm to the parity-check matrices of reduced memory. We show numerical results of computing the free distance and the low-part weight spectrum of LDPC convolutional codes of memory about 130.

  • Syndrome Decoding of Symbol-Pair Codes

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:12
      Page(s):
    2423-2428

    Cassuto and Blaum proposed new error correcting codes which are called symbol-pair codes. They presented a coding framework for channels whose outputs are overlapping pairs of symbols in storage applications. Such channels are called symbol-pair read channels. The pair distance and pair error are used in symbol-pair read channels. Cassuto et al. and Yaakobi et al. presented decoding algorithms for symbol-pair codes. However, their decoding algorithms cannot always correct errors whose number is not more than half the minimum pair distance. In this paper, we propose a new decoding algorithm using syndromes of symbol-pair codes. In addition, we show that the proposed algorithm can correct all pair errors within the pair error correcting capability.

  • On the Probabilistic Computation Method with Reliability for the Weight Distribution of LDPC Codes

    Masanori HIROTOMO  Masami MOHRI  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E95-A No:4
      Page(s):
    790-800

    In the analysis of maximum-likelihood decoding performance of low-density parity-check (LDPC) codes, the weight distribution is an important factor. We presented a probabilistic method for computing the weight distribution of LDPC codes, and showed results of computing the weight distribution of several LDPC codes. In this paper, we improve our previously presented method and propose a probabilistic computation method with reliability for the weight distribution of LDPC codes. Using the proposed method, we can determine the weight distribution with small failure probability.

  • Delivering CRL with Low Bit Rate Network Coded Communication for ITS

    Yoshiaki SHIRAISHI  Masanori HIROTOMO  Masami MOHRI  Taisuke YAMAMOTO  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2440-2448

    The application of Intelligent Transport Systems (ITS) transmits data with road-to-vehicle communication (RVC) and inter-vehicle communication (IVC). Digital signature is essential to provide security for RVC and IVC. The public key certificate is used to verify that a public key belongs to an individual prover such as user or terminal. A certificate revocation list (CRL) is used for verifying validity of the public key certificate. A certificate authority (CA) publishes a CRL and distributes it to vehicles. CRL distribution traffic disturbs ITS application traffic because of sharing wireless channel between them. To distribute it on low bit rate will help to ease the disturbance. Although multiplex transmitting is effective in reliable communication, a duplication of received packets is waste of bandwidth as a consequence. This paper proposes a CRL distribution scheme based on random network coding which can reduce duplicate packets. The simulation results show that the number of duplicate packets of the proposed scheme is less than that of a simple error correction (EC)-based scheme and the proposed one can distribute CRL to more vehicles than EC-based ones.

  • Error-Trapping Decoding for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2578-2584

    Symbol-pair read channels output overlapping pairs of symbols in storage applications. Pair distance and pair error are used in the channels. In this paper, we discuss error-trapping decoding for cyclic codes over symbol-pair read channels. By putting some restrictions on the correctable pair error patterns, we propose a novel error-trapping decoding algorithm over the channels and show a circuitry for implementing the decoding algorithm. In addition, we discuss how to modify the restrictions on the correctable pair error patterns.

  • Coded Caching in Multi-Rate Wireless Networks Open Access

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E103-A No:12
      Page(s):
    1347-1355

    The network load is increasing due to the spread of content distribution services. Caching is recognized as a technique to reduce the peak network load by storing popular content into memories of users. Coded caching is a new caching approach based on a carefully designed content placement to create coded multicasting opportunities. Coded caching schemes in single-rate networks are evaluated by the tradeoff between the size of memory and that of delivered data. For considering the network with multiple transmission rates, it is crucial how to operate multicast. In multicast delivery, a sender must communicate to intended receivers at a rate that is available to all receivers. Multicast scheduling method of determining rates to deliver are evaluated by throughput and delay in multi-rate wireless networks. In this paper, we discuss coded caching in the multi-rate wireless networks. We newly define a measure for evaluating the coded caching scheme as coded caching delay and propose a new coded caching scheme. Also, we compare the proposed coded caching scheme with conventional coded caching schemes and show that the proposed scheme is suitable for multi-rate wireless networks.

  • Irreducible m-Term Polynomial and Its Application to Multiplication over GF(2m)

    Yuko OZASA  Masanori HIROTOMO  Masakatu MORII  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E94-A No:3
      Page(s):
    1045-1048

    In this paper, we present a specific type of irreducible polynomial which is an irreducible m-term polynomial of degree m. Designing the parallel multiplier over GF(2m) by the quadrinomial obtained from this irreducible polynomial, its critical delay path is smaller than that of conventional multipliers for some degree m.

  • Coded Caching for Hierarchical Networks with a Different Number of Layers

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding theory and techniques

      Vol:
    E101-A No:12
      Page(s):
    2037-2046

    The network load is increasing due to the spread of content distribution services. Caching is known as a technique to reduce a peak network load by prefetching popular contents into memories of users. Coded caching is a new caching approach based on a carefully designed content placement in order to create coded multicasting opportunities. Recent works have discussed single-layer caching systems, but many networks consist of multiple layers of cache. In this paper, we discuss a coded caching problem for a hierarchical network that has a different number of layers of cache. The network has users who connect to an origin server via a mirror server and users who directly connect to the origin server. We provide lower bounds of the rates for this problem setting based on the cut-set bound. In addition, we propose three basic coded caching schemes and characterize these schemes. Also, we propose a new coded caching scheme by combining two basic schemes and provide achievable rates of the combination coded caching scheme. Finally, we show that the proposed combination scheme demonstrates a good performance by a numerical result.

  • A Decoding Algorithm for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:12
      Page(s):
    2415-2422

    Cassuto and Blaum presented a new coding framework for channels whose outputs are overlapping pairs of symbols in storage applications. Such channels are called symbol-pair read channels. Pair distance and pair error are used in symbol-pair read channels. Yaakobi et al. proved a lower bound on the minimum pair distance of cyclic codes. Furthermore, they provided a decoding algorithm for correcting pair errors using a decoder for cyclic codes, and showed the number of pair errors that can be corrected by their algorithm. However, their algorithm cannot correct all pair error vectors within half of the minimum pair distance. In this paper, we propose an efficient decoding algorithm for cyclic codes over symbol-pair read channels. It is based on the relationship between pair errors and syndromes. In addition, we show that the proposed algorithm can correct more pair errors than Yaakobi's algorithm.

  • Zero-Knowledge Identification Scheme Using LDPC Codes

    Haruka ITO  Masanori HIROTOMO  Youji FUKUTA  Masami MOHRI  Yoshiaki SHIRAISHI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2688-2697

    Recently, IoT compatible products have been popular, and various kinds of things are IoT compliant products. In these devices, cryptosystems and authentication are not treated properly, and security measures for IoT devices are not sufficient. Requirements of authentication for IoT devices are power saving and one-to-many communication. In this paper, we propose a zero-knowledge identification scheme using LDPC codes. In the proposed scheme, the zero-knowledge identification scheme that relies on the binary syndrome decoding problem is improved and the computational cost of identification is reduced by using the sparse parity-check matrix of the LDPC codes. In addition, the security level, computational cost and safety of the proposed scheme are discussed in detail.

  • Multi-Environment Analysis System for Evaluating the Impact of Malicious Web Sites Changing Their Behavior

    Yoshiaki SHIRAISHI  Masaki KAMIZONO  Masanori HIROTOMO  Masami MOHRI  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2449-2457

    In the case of drive-by download attacks, most malicious web sites identify the software environment of the clients and change their behavior. Then we cannot always obtain sufficient information appropriate to the client organization by automatic dynamic analysis in open services. It is required to prepare for expected incidents caused by re-accessing same malicious web sites from the other client in the organization. To authors' knowledge, there is no study of utilizing analysis results of malicious web sites for digital forensic on the incident and hedging the risk of expected incident in the organization. In this paper, we propose a system for evaluating the impact of accessing malicious web sites by using the results of multi-environment analysis. Furthermore, we report the results of evaluating malicious web sites by the multi-environment analysis system, and show how to utilize analysis results for forensic analysis and risk hedge based on actual cases of analyzing malicious web sites.

  • A Probabilistic Algorithm for Computing the Weight Distribution of LDPC Codes

    Masanori HIROTOMO  Masami MOHRI  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:7
      Page(s):
    1677-1689

    Low-density parity-check (LDPC) codes are linear block codes defined by sparse parity-check matrices. The codes exhibit excellent performance under iterative decoding, and the weight distribution is used to analyze lower error probability of their decoding performance. In this paper, we propose a probabilistic method for computing the weight distribution of LDPC codes. The proposed method efficiently finds low-weight codewords in a given LDPC code by using Stern's algorithm, and stochastically computes the low part of the weight distribution from the frequency of the found codewords. It is based on a relation between the number of codewords with a given weight and the rate of generating the codewords in Stern's algorithm. In the numerical results for LDPC codes of length 504, 1008 and 4896, we could compute the weight distribution by the proposed method with greater accuracy than by conventional methods.

  • Algebraic Decoding of BCH Codes over Symbol-Pair Read Channels: Cases of Two-Pair and Three-Pair Error Correction

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E99-A No:12
      Page(s):
    2179-2191

    In this paper, we discuss an algebraic decoding of BCH codes over symbol-pair read channels. The channels output overlapping pairs of symbols in storage applications. The pair distance and pair error are used in the channels. We define a polynomial that represents the positions of the pair errors as the error-locator polynomials and a polynomial that represents the positions of the pairs of a received pair vector in conflict as conflict-locator polynomial. In this paper, we propose algebraic methods for correcting two-pair and three-pair errors for BCH codes. First, we show the relation between the error-locator polynomials and the conflict-locator polynomial. Second, we show the relation among these polynomials and the syndromes. Finally, we provide how to correct the pair errors by solving equations including the relational expression by algebraic methods.