The search functionality is under construction.

Author Search Result

[Author] Masaaki YAMAMOTO(2hit)

1-2hit
  • Power-Absorption-Based Model for Power Compensation in WLAN Positioning Using Smartphone

    Masaaki YAMAMOTO  Tomoaki OHTSUKI  

     
    PAPER-Sensing

      Vol:
    E98-B No:6
      Page(s):
    1125-1132

    To achieve accurate wireless-local-area-network (WLAN) positioning, the directivity and influence of multipath fading on the power absorption by the user are clarified experimentally. Based on the results, a general model of the power absorption by the user is devised. The parameters of the model are estimated using maximum-likelihood estimation (MLE) and the magnetic sensor built into modern smartphones. The proposed method compensates the power absorption and the influence of multipath fading. According to experimental evaluations, the root-mean-square error (RMSE) of the proposed method is 34% lower than that of the conventional one. Namely, RMSE of the proposed method is 1.94m in a room.

  • An On-Chip Power-on Reset Circuit for Low Voltage Technology

    Takeo YASUDA  Masaaki YAMAMOTO  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    366-372

    The power supply voltage of LSI has been lowered due to system requirements for low power dissipation. An on-chip power-on reset pulse generator (POR-PG) is used to determine the initial state of the memory devices of the system LSI. The requirement for the POR-PG is strict for lower power supply voltage because noise margin is smaller relatively. This paper describes a POR-PG for low power voltage supply (Vdd) which overcomes these problems. Hardware measurement proves improved pulse height relative to various power-on profiles (slope, rise time etc.) and fluctuations of temperature and process. Further, the design provides robust noise immunity against voltage fluctuations on the power supply line. The circuit is implemented within a small area (115 µm 345 µm) in the input/output buffer area of a micro-processor and hard-disk controller integrated LSI with 0.25-µm four-layer-metal CMOS technology.