The search functionality is under construction.

Author Search Result

[Author] Masaki BANDAI(15hit)

1-15hit
  • Chunk Grouping Method to Estimate Available Bandwidth for Adaptive Bitrate Live Streaming

    Daichi HATTORI  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1133-1142

    The Common Media Application Format (CMAF) is a standard for adaptive bitrate live streaming. The CMAF adapts chunk encoding and enables low-latency live streaming. However, conventional bandwidth estimation for adaptive bitrate streaming underestimates bandwidth because download time is affected not only by network bandwidth but also by the idle times between chunks in the same segment. Inaccurate bandwidth estimation decreases the quality of experience of the streaming client. In this paper, we propose a chunk-grouping method to estimate the available bandwidth for adaptive bitrate live streaming. In the proposed method, by delaying HTTP request transmission and bandwidth estimation using grouped chunks, the client estimates the available bandwidth accurately due to there being no idle times in the grouped chunks. In addition, we extend the proposed method to dynamically change the number of grouping chunks according to buffer length during downloading of the previous segment. We evaluate the proposed methods under various network conditions in order to confirm the effectiveness of the proposed methods.

  • A Video-Quality Controller for QoE Enhancement in HTTP Adaptive Streaming

    Takumi KUROSAKA  Shungo MORI  Masaki BANDAI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1163-1174

    In this paper, we propose a quality-level control method based on quality of experience (QoE) characteristics for HTTP adaptive streaming (HAS). The proposed method works as an adaptive bitrate controller on the HAS client. The proposed method consists of two operations: buffer-aware control and QoE-aware control. We implement the proposed method on an actual dynamic adaptive streaming over HTTP (DASH) program and evaluate the QoE performance of the proposed method via both objective and subjective evaluations. The results show that the proposed method effectively improves both objective and subjective QoE performances by preventing stalling events and quality-level switchings that have a negative influence on subjective QoE performance.

  • Split Multi-Path Routing Protocol with Load Balancing Policy (SMR-LB) to Improve TCP Performance in Mobile Ad Hoc Networks

    Takeshi MURAKAMI  Masaki BANDAI  Iwao SASASE  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:5
      Page(s):
    1517-1525

    In this paper, we propose Split Multi-path Routing protocol with Load Balancing policy (SMR-LB) to improve TCP performance in mobile ad hoc networks. In SMR-LB, each intermediate node records how many primary paths are attempted to construct as well as which source nodes attempt to construct the primary path. Each intermediate node decides which primary path should be constructed by using the primary path and the source node ID information. As a result, SMR-LB can balance the loads and so reduce the probability of congestion and avoid the continuous link breakage time between the specific source and destination pair. Computer simulation results show that SMR-LB can improve TCP performance compared with the conventional protocols.

  • A Congestion Control Method for Named Data Networking with Hop-by-Hop Window-Based Approach

    Takahiko KATO  Masaki BANDAI  Miki YAMAMOTO  

     
    PAPER-Network System

      Pubricized:
    2018/06/28
      Vol:
    E102-B No:1
      Page(s):
    97-110

    Congestion control is a hot topic in named data networking (NDN). Congestion control methods for NDN are classified into two approaches: the rate-based approach and the window-based approach. In the window-based approach, the optimum window size cannot be determined due to the largely changing round-trip time. Therefore, the rate-based approach is considered to be suitable for NDN and has been studied actively. However, there is still room for improvement in the window-based approach because hop-by-hop control in this approach has not been explored. In this paper, we propose a hop-by-hop widow-based congestion control method for NDN (HWCC). The proposed method introduces a window-size control for per-hop Interest transmission using hop-by-hop acknowledgment. In addition, we extend HWCC so that it can support multipath forwarding (M-HWCC) in order to increase the network resources utilization. The simulation results show that both of HWCC and M-HWCC achieve high throughput performance, as well as the max-min fairness, while effectively avoiding congestion.

  • Suppression in Quality Variation for 360-Degree Tile-Based Video Streaming

    Arisa SEKINE  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2020/12/17
      Vol:
    E104-B No:6
      Page(s):
    616-623

    For 360-degree video streaming, a 360-degree video is divided into segments temporally (i.e. some seconds). Each segment consists of multiple video tiles spatially. In this paper, we propose a tile quality selection method for tile-based video streaming. The proposed method suppresses the spatial quality variation within the viewport caused by a change of the viewport region due to user head movement. In the proposed method, the client checks whether the difference in quality level between the viewport and the region around the viewport is large, and if so, reduces it when assigning quality levels. Simulation results indicate that when the segment length is long, quality variation can be suppressed without significantly reducing the perceived video quality (in terms of bitrate). In particular, the quality variation within the viewport can be greatly suppressed. Furthermore, we verify that the proposed method is effective in reducing quality variation within the viewport and across segments without changing the total download size.

  • A Directional MAC Protocol with Deafness Avoidance in Ad Hoc Networks

    Masanori TAKATA  Masaki BANDAI  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E90-B No:4
      Page(s):
    866-875

    This paper addresses the issue of deafness in MAC (Medium Access Control) protocols for wireless ad hoc networks using directional antennas. Directional antennas are expected to provide significant improvements over omni-directional antennas in ad hoc networks, such as high spatial reuse and range extension. Recently, several MAC protocols using directional antennas, typically referred to as directional MAC protocols, have been proposed for ad hoc networks. However, directional MAC protocols inherently introduce new kinds of problems arising from directivity. One major problem is deafness, caused by a lack of state information of neighbor nodes, whether idle or busy. This paper proposes DMAC/DA (Directional MAC with Deafness Avoidance) to overcome the deafness problem. DMAC/DA modifies the previously proposed MAC protocol, MDA (MAC protocol for Directional Antennas), to reduce the number of control messages and also maintain the ability to handle deafness. In DMAC/DA, WTS (Wait To Send) frames are simultaneously transmitted by the transmitter and the receiver after the successful exchange of directional RTS (Request To Send) and CTS (Clear To Send) to notify the on-going communication to potential transmitters that may experience deafness. The experimental results show that DMAC/DA outperforms existing directional MAC protocols, such as DMAC (Directional MAC) and MDA, in terms of throughput, control overhead and packet drop ratio under the different values of parameters such as the number of flows and the number of beams. In addition, qualitative evaluation of 9 MAC protocols is presented to highlight the difference between DMAC/DA and existing MAC protocols.

  • Congestion Control for Multi-Source Content Retrieval in Content Centric Networks

    Junpei MIYOSHI  Satoshi KAWAUCHI  Masaki BANDAI  Miki YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1832-1841

    CCN/NDN (Content-Centric Networking/Named-Data Networking) is one of the most promising content-oriented network architectures. In CCN/NDN, forwarding information base (FIB) might have multiple entries for a same content name prefix, which means CCN/NDN potentially supports multi-source download. When a content is obtained from multiple sources, the technical knowledge obtained for congestion control in the current Internet cannot be simply applied. This is because in the current Internet, FIB is restricted to have only one entry for each IP address prefix, which causes quite different path feature from CCN/NDN. This paper proposes a new congestion control for CCN/NDN with multi-source content retrieval. The proposed congestion control is composed of end-to-end window flow control and router assisted Interest forwarding control, and enables transmission rate regulation only on a congested branch.

  • Bandwidth Efficient IoT Traffic Shaping Technique for Protecting Smart Home Privacy from Data Breaches in Wireless LAN

    Kiana DZIUBINSKI  Masaki BANDAI  

     
    PAPER-Internet

      Pubricized:
    2021/02/09
      Vol:
    E104-B No:8
      Page(s):
    961-973

    The automation of the home through Internet of Things (IoT) devices presents security challenges for protecting the safety and privacy of its inhabitants. In spite of standard wireless communication security protocols, an attacker inside the wireless communication range of the smart home can extract identifier and statistical information, such as the MAC address and packet lengths, from the encrypted wireless traffic of IoT devices to make inferences about the private activities of the user. In this paper, to prevent this breach on privacy in the wireless LAN, we accomplish the following three items. First, we demonstrate that performing traffic shaping simultaneously on the upload and download node is necessary; second, we demonstrate that traffic shaping by random packet generation is impracticable due to the excessive bandwidth requirement; third, we propose traffic shaping by variable padding durations to reduce the bandwidth requirement for injecting dummy traffic during periods of user activity and inactivity to decrease the confidence of the local attacker from identifying genuine user activity traffic. From our performance evaluation, we decreased the data generated on several WiFi and ZigBee-enabled IoT devices by over 15% by our proposal of variable padding durations compared to the conventional method of fixed padding durations at low attacker confidence.

  • Signal Strength Based Energy Efficient Routing for Ad Hoc Networks

    Masaki BANDAI  Satoshi NAKAYAMA  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E91-B No:4
      Page(s):
    1006-1014

    In this paper, we propose a novel energy-efficient route-discovery scheme with transmission power control (TPC) for ad hoc networks. The proposed scheme is very simple and improves energy efficiency without any information about neighbor nodes. In the proposed scheme, when a node receives a route request (RREQ), the node calculates the routing-level backoff time as being inversely proportional to the received power of the RREQ. After the route discovery, source and intermediate nodes transmit packets by the power-controlled medium access control (MAC) protocol. In addition, we propose an extended version of the proposed scheme for discrete power control devices. Simulation results demonstrate the proposed schemes can discover more energy efficient routes than the conventional schemes.

  • A Rate-Based Congestion Control Method for NDN Using Sparse Explicit Rate Notification and AIMD-Based Rate Adjustment

    Takahiko KATO  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1519-1529

    In this paper, we propose a new rate-based congestion control method for Named Data Networking (NDN) using additive increase multiplicative decrease (AIMD) and explicit rate notification. In the proposed method, routers notify a corresponding consumer of bottleneck bandwidth by use of Data packets, in a relatively long interval. In addition, routers monitor outgoing faces using the leaky bucket mechanism. When congestion is detected, the routers report this to corresponding consumers using negative-acknowledgment (NACK) packets. A consumer sets its Interest sending rate to the reported rate when a new value is reported. In addition, the consumer adjusts the sending rate to be around the reported rate based on the AIMD mechanism at Data/NACK packet reception. Computer simulations show that the proposed method achieves a high throughput performance and max-min fairness thanks to the effective congestion avoidance.

  • Load Balancing of Multi-Sink Sensor Networks with Asymmetric Topology and Traffic Patterns

    Yuta AOKI  Tadao OISHI  Masaki BANDAI  Munehiro FUKUDA  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E96-B No:10
      Page(s):
    2601-2614

    In wireless sensor networks, energy depletion of bottleneck nodes which have more data packets to relay than others, dominates the network lifetime referred to as the funnel effect problem. To overcome this problem, multiple sink methods have been proposed where sensor nodes send observed data packets toward several sinks to distribute traffic load of bottleneck nodes. If both of the topology and the traffic pattern are symmetric, bottleneck nodes are located near sinks. However, in a general sensor network with an asymmetric topology and/or an asymmetric traffic pattern, bottleneck nodes may exist any place in the network. In this paper, we propose DCAM (DispersiveCast of packets to Avoid bottleneck nodes for Multiple sink sensor network), which is a load balancing method to improve lifetime of a sensor network with an asymmetric topology and an asymmetric traffic pattern. DCAM first finds bottleneck nodes, and then balances the load on the bottleneck nodes. Selected nodes send data packets to several sinks dispersively according to some criteria. The criteria classify DCAM into three variations: DCAM with probability (DCAM-P), DCAM with moving boarder (DCAM-MB), and DCAM with round-robin (DCAM-RR). This paper gives details of the DCAM methods, and thereafter evaluates them with asymmetric topologies and asymmetric traffic patterns. To deal with these dynamic asymmetry, the topology is modeled by a grid network with virtual holes that are defined as vacant places of nodes in the network. Asymmetry of traffic pattern is modeled by defining a hot area where nodes have heavier data traffic than the others. The evaluations are conducted as changing hot-area traffic patterns as well as fixing hot-area patterns. The results show that DCAM improves network lifetime up to 1.87 times longer than the conventional schemes, (i.e., nearest sink transmissions and optimal dispersive cast of packet). We also discuss DCAM on several aspects such as overhead, energy consumption, and applications.

  • A Quality-Level Selection for Adaptive Video Streaming with Scalable Video Coding

    Shungo MORI  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    824-831

    In this paper, we propose a quality-level selection method for adaptive video streaming with scalable video coding (SVC). The proposed method works on the client with the dynamic adaptive streaming over HTTP (DASH) with SVC. The proposed method consists of two components: introducing segment group and a buffer-aware layer selection algorithm. In general, quality of experience (QoE) performance degrades due to stalling (playback buffer underflow), low playback quality, frequent quality-level switching, and extreme-down quality switching. The proposed algorithm focuses on reducing the frequent quality-level switching, and extreme-down quality switching without increasing stalling and degrading playback quality. In the proposed method, a SVC-DASH client selects a layer every G segments, called a segment group to prevent frequent quality-level switching. In addition, the proposed method selects the quality of a layer based on a playback buffer in a layer selection algorithm for preventing extreme-down switching. We implement the proposed method on a real SVC-DASH system and evaluate its performance by subjective evaluations of multiple users. As a result, we confirm that the proposed algorithm can obtain better mean opinion score (MOS) value than a conventional SVC-DASH, and confirm that the proposed algorithm is effective to improve QoE performance in SVC-DASH.

  • An On-Demand Routing Using Signal Strength for Multi-Rate Ad Hoc Networks

    Masaki BANDAI  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E90-B No:9
      Page(s):
    2504-2512

    In this paper, to realize the low delay and high throughput route discovery in multi-rate ad hoc networks, we propose a novel on-demand routing using signal strength, called signal strength aware routing (SSR). SSR is based on the on-demand routing with the route request (RREQ) and route reply (RREP) procedure. In SSR, a node measures the signal strength of a received RREQ, and calculate the appropriate data transmission rate. Nodes also calculate the standby time for the RREQ forwarding proportionally to the medium time at the data transmission rate. A RREQ through higher data rate links arrives at the destination earlier, and the destination can select a low delay and high throughput route easily. We evaluate the performance of SSR in terms of delay, throughput and route discovery delay by means of QualNet network simulator. As a result, we show that SSR can discover the lower delay and higher throughput route than the conventional shortest hop routing without increasing control overhead in multi-rate ad hoc networks.

  • A Routing Protocol with High Node Exchangeability for Sustainable Sensor Networks

    Yuichi YUASA  Masaki BANDAI  Takashi WATANABE  

     
    PAPER

      Vol:
    E90-A No:7
      Page(s):
    1353-1361

    Recently, wireless sensor networks have been seen as a key technology for a ubiquitous computing society. In sensor networks, many network technologies have been developed, whose main concern is reduction of power consumption of sensor nodes. Moreover, these conventional approaches assume that a node in a sensor network operate in a finite quantity and initial battery of a node. However, if we use the sensor network in the natural environment, it means that the batteries of nodes must be exchanged to long term operation. From a viewpoint of the environmental sustainability it is also necessary for sensor nodes to be easily collected and replaced. This paper proposes a routing protocol for sensor networks with high node exchangeability in order to realize the continuous long-term operations of sensor networks. In the proposed routing protocol, power consumption of nodes is partially biased and the region is rotated in order to exchange a set of nodes easily. We evaluate the proposed routing protocol comparing with DSR, and a routing protocol where all nodes try to consume the battery equally. We use evaluation metrics biased toward transmitting data, the battery residue of nodes at the exchange time, the transition of operating nodes. The results show that the difference of the battery residue between the largest and the smallest nodes is 88% and node exchangeability improves by restricting the geographical area of exchanging nodes.

  • A Routing Protocol with Stepwise Interest Retransmission for Wireless Sensor Networks

    Masaki BANDAI  Takamasa MIOKI  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E91-B No:5
      Page(s):
    1446-1453

    In this paper, a routing protocol referred to as Directed Diffusion with Stepwise Interest Retransmission (DD/SIR) for wireless sensor networks is proposed to mitigate power consumption considering node mobility. In DD/SIR, a sink retransmits interest. The propagation areas of the interest are narrowed stepwisely. In addition, according to the number of hops between the sink and sensor nodes, the data transmission timing is controlled sequentially. By both theoretical analysis and computer simulation, we evaluate the performance of DD/SIR. We show that DD/SIR can mitigate control overhead and realize low power operation without degrading data reachability to the sink. Especially, at a small number of data sending nodes, DD/SIR is more effective than the conventional routing.