The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takahiko KATO(2hit)

1-2hit
  • A Congestion Control Method for Named Data Networking with Hop-by-Hop Window-Based Approach

    Takahiko KATO  Masaki BANDAI  Miki YAMAMOTO  

     
    PAPER-Network System

      Pubricized:
    2018/06/28
      Vol:
    E102-B No:1
      Page(s):
    97-110

    Congestion control is a hot topic in named data networking (NDN). Congestion control methods for NDN are classified into two approaches: the rate-based approach and the window-based approach. In the window-based approach, the optimum window size cannot be determined due to the largely changing round-trip time. Therefore, the rate-based approach is considered to be suitable for NDN and has been studied actively. However, there is still room for improvement in the window-based approach because hop-by-hop control in this approach has not been explored. In this paper, we propose a hop-by-hop widow-based congestion control method for NDN (HWCC). The proposed method introduces a window-size control for per-hop Interest transmission using hop-by-hop acknowledgment. In addition, we extend HWCC so that it can support multipath forwarding (M-HWCC) in order to increase the network resources utilization. The simulation results show that both of HWCC and M-HWCC achieve high throughput performance, as well as the max-min fairness, while effectively avoiding congestion.

  • A Rate-Based Congestion Control Method for NDN Using Sparse Explicit Rate Notification and AIMD-Based Rate Adjustment

    Takahiko KATO  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1519-1529

    In this paper, we propose a new rate-based congestion control method for Named Data Networking (NDN) using additive increase multiplicative decrease (AIMD) and explicit rate notification. In the proposed method, routers notify a corresponding consumer of bottleneck bandwidth by use of Data packets, in a relatively long interval. In addition, routers monitor outgoing faces using the leaky bucket mechanism. When congestion is detected, the routers report this to corresponding consumers using negative-acknowledgment (NACK) packets. A consumer sets its Interest sending rate to the reported rate when a new value is reported. In addition, the consumer adjusts the sending rate to be around the reported rate based on the AIMD mechanism at Data/NACK packet reception. Computer simulations show that the proposed method achieves a high throughput performance and max-min fairness thanks to the effective congestion avoidance.