1-3hit |
Zejun ZHANG Yasuhide TSUJI Masashi EGUCHI Chun-ping CHEN
A compact optical polarization converter (PC) based on slot waveguide has been proposed in this study. Utilizing the high refractive index contrast between a Si waveguide and SiO2 cladding on the silicon-on-insulator platform, the light beam can be strongly confined in a slot waveguide structure. The proposed PC consists of a square waveguide and an L-shape cover waveguide. Since the overall structure is symmetrically distributed along the axis rotated 45-degree from the horizontal direction, the optical axis of this PC lies in the direction with equi-angle from two orthogonally polarized modes of the input and output ends, which leads to a high polarization conversion efficiency (PCE). 3D FDTD simulation results illustrate that a TE-to-TM mode conversion is achieved with a device length of 8.2 µm, and the PCE exceeds 99.8%. The structural tolerance and wavelength dependence of the PC have also been discussed in detail.
Kazuki ICHIKAWA Zejun ZHANG Yasuhide TSUJI Masashi EGUCHI
We propose a novel single polarization photonic band gap fiber (SP-PBGF) with an anisotropic air hole lattice in the core. An SP-PBGF with an elliptical air hole lattice in the core recently proposed can easily realize SP guidance utilizing the large difference of cutoff frequency for the x- and y-polarized modes. In this paper, in order to achieve SP guidance based on the same principle of this PBGF, we utilize an anisotropic lattice of circular air holes instead of elliptical air holes to ease the fabrication difficulty. After investigating the influence of the structural parameters on SP guidance, it is numerically demonstrated that the designed SP-PBGF has 381 nm SP operating band.
Zejun ZHANG Yasuhide TSUJI Masashi EGUCHI Chun-ping CHEN
A single-polarization single-mode (SPSM) photonic crystal fiber (PCF) based on double-hole unit core is proposed in this paper for application to cross-talk free polarization splitter (PS). Birefringence of the PCF is obtained by adopting double-hole unit cells into the core to destroy its symmetry. With an appropriate cladding hole size, single x- or y-polarized PCF can be achieved by arranging the double-hole unit in the core along the x- or y-axis, respectively. Moreover, our proposed SPSM PCF has the potential to be applied to consist a cross-talk free PS. The simulation result by employing a vectorial finite element beam propagation method (FE-BPM) demonstrates that an arbitrary polarized incident light can be completely separated into two orthogonal single-polarized components through the PS. The structural tolerance and wavelength dependence of the PS have also been discussed in detail.