The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Masataka AKANE(3hit)

1-3hit
  • Fast Ate Pairing Computation of Embedding Degree 12 Using Subfield-Twisted Elliptic Curve

    Masataka AKANE  Yasuyuki NOGAMI  Yoshitaka MORIKAWA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E92-A No:2
      Page(s):
    508-516

    This paper presents implementation techniques of fast Ate pairing of embedding degree 12. In this case, we have no trouble in finding a prime order pairing friendly curve E such as the Barreto-Naehrig curve y2=x3+a, a∈Fp. For the curve, an isomorphic substitution from G2 ⊂ E(Fp12 into G'2 in subfield-twisted elliptic curve E'(Fp2) speeds up scalar multiplications over G2 and wipes out denominator calculations in Miller's algorithm. This paper mainly provides about 30% improvement of the Miller's algorithm calculation using proper subfield arithmetic operations. Moreover, we also provide the efficient parameter settings of the BN curves. When p is a 254-bit prime, the embedding degree is 12, and the processor is Pentium4 (3.6 GHz), it is shown that the proposed algorithm computes Ate pairing in 13.3 milli-seconds including final exponentiation.

  • Scalar Multiplication Using Frobenius Expansion over Twisted Elliptic Curve for Ate Pairing Based Cryptography

    Yasuyuki NOGAMI  Yumi SAKEMI  Takumi OKIMOTO  Kenta NEKADO  Masataka AKANE  Yoshitaka MORIKAWA  

     
    PAPER-Mathematics

      Vol:
    E92-A No:1
      Page(s):
    182-189

    For ID-based cryptography, not only pairing but also scalar multiplication must be efficiently computable. In this paper, we propose a scalar multiplication method on the circumstances that we work at Ate pairing with Barreto-Naehrig (BN) curve. Note that the parameters of BN curve are given by a certain integer, namely mother parameter. Adhering the authors' previous policy that we execute scalar multiplication on subfield-twisted curve (Fp2) instead of doing on the original curve E(Fp12), we at first show sextic twisted subfield Frobenius mapping (ST-SFM) in (Fp2). On BN curves, note is identified with the scalar multiplication by p. However a scalar is always smaller than the order r of BN curve for Ate pairing, so ST-SFM does not directly applicable to the above circumstances. We then exploit the expressions of the curve order r and the characteristic p by the mother parameter to derive some radices such that they are expressed as a polynomial of p. Thus, a scalar multiplication [s] can be written by the series of ST-SFMs . In combination with the binary method or multi-exponentiation technique, this paper shows that the proposed method runs about twice or more faster than plain binary method.

  • Integer Variable χ-Based Cross Twisted Ate Pairing and Its Optimization for Barreto-Naehrig Curve

    Yasuyuki NOGAMI  Yumi SAKEMI  Hidehiro KATO  Masataka AKANE  Yoshitaka MORIKAWA  

     
    PAPER-Theory

      Vol:
    E92-A No:8
      Page(s):
    1859-1867

    It is said that the lower bound of the number of iterations of Miller's algorithm for pairing calculation is log 2r/(k), where () is the Euler's function, r is the group order, and k is the embedding degree. Ate pairing reduced the number of the loops of Miller's algorithm of Tate pairing from ⌊log 2r⌋ to ⌊ log 2(t-1)⌋, where t is the Frobenius trace. Recently, it is known to systematically prepare a pairing-friendly elliptic curve whose parameters are given by a polynomial of integer variable "χ." For such a curve, this paper gives integer variable χ-based Ate (Xate) pairing that achieves the lower bound. In the case of the well-known Barreto-Naehrig pairing-friendly curve, it reduces the number of loops to ⌊log 2χ⌋. Then, this paper optimizes Xate pairing for Barreto-Naehrig curve and shows its efficiency based on some simulation results.