The search functionality is under construction.

Author Search Result

[Author] Masataka NAKAZAWA(18hit)

1-18hit
  • Polarization Mode Properties of an Elliptical Stress-Cladding Fiber

    Nori SHIBATA  Katsunari OKAMOTO  Masataka NAKAZAWA  Shigeyuki SEIKAI  Masamitsu TOKUDA  

     
    PAPER-Optical and Quantum Electronics

      Vol:
    E68-E No:5
      Page(s):
    277-283

    Polarization mode properties of a polarization-preserving fiber having elliptical stress-cladding with barrier layer around the core are clarified theoretically and experimentally. Normalized frequency dependence of modal birefringence and polarization mode dispersion were measured for the polarization-preserving fiber. It is found from theoretically and experimentally evaluated results that the elliptical stress-cladding fiber has polarization-mode properties similar to those of the polarization-preserving fiber having isolated stress-producing lobes. Stress profiles of the elliptical stress-cladding fiber were measured and calculated for confirming the polarization-mode properties of the fiber. It is known from the measured results that the similarities of polarization-mode properties between the elliptical stress-cladding fiber and the fiber will stress-producing lobes are caused by those of differential stress profiles around the core regions between them.

  • Ultrahigh-Speed OTDM Transmission beyond 1 Tera Bit-Per-Second Using a Femtosecond Pulse Train

    Masataka NAKAZAWA  Takashi YAMAMOTO  Koichi Robert TAMURA  

     
    INVITED PAPER-OTDM Transmission System, Optical Regeneration and Coding

      Vol:
    E85-C No:1
      Page(s):
    117-125

    Progress on a single wavelength channel OTDM terabit/s transmission is described. In particular, we focus on 1.28 Tbit/s OTDM transmission over 70 km which we realized recently. A pre-chirping technique using a high speed phase modulator is emphasized to simultaneously compensate for third- and fourth-order dispersion. The input pulse width was 380 fs, and the pulse broadening after a 70 km transmission was as small as 20 fs. All 128 channels time-division-demultiplexed to 10 Gbit/s had a bit error rate of less than 110-9, in which we employed a lot of new technique for pulse generation, dispersion compensation and demultiplexing. These techniques help pave the path for OTDM technology of the 21 century.

  • Intracavity Dispersion Effects of a Regeneratively and Harmonically FM Mode-Locked Erbium-Doped Fiber Laser

    Eiji YOSHIDA  Kohichi TAMURA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    189-194

    The dependence of the output characteristics of a regeneratively and harmonically FM mode-locked erbium-doped fiber laser on intracavity dispersion have been investigated by changing the group velocity dispersion (GVD) of the fiber. It is shown that a stable pulse train can be obtained only when the GVD of the cavity is anomalous in the presence of self-phase modulation (SPM). The shortest pulse obtained was 2. 0 ps at a repetition rate of 10 GHz.

  • Ultra-Stable Regeneratively Mode-Locked Laser as an Opto-Electronic Microwave Oscillator and Its Application to Optical Metrology

    Masataka NAKAZAWA  Masato YOSHIDA  Toshihiko HIROOKA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    443-449

    Ultrahigh-speed fiber lasers operating at up to 40 GHz offer a clean longitudinal comb and a narrow linewidth. This makes them suitable for applications including optical comb generation, ultrahigh-speed optical pulse transmission including PSK, and as opto-microwave oscillators. In this paper, we describe recent progress on ultrafast fiber lasers and their applications to optical metrology.

  • Precise Measurements and their Analysis of GAWBS-Induced Depolarization Noise in Multi-Core Fiber for Digital Coherent Transmission

    Masato YOSHIDA  Kozo SATO  Toshihiko HIROOKA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Pubricized:
    2021/08/02
      Vol:
    E105-B No:2
      Page(s):
    151-158

    We present detailed measurements and analysis of the guided acoustic wave Brillouin scattering (GAWBS)-induced depolarization noise in a multi-core fiber (MCF) used for a digital coherent optical transmission. We first describe the GAWBS-induced depolarization noise in an uncoupled four-core fiber (4CF) with a 125μm cladding and compare the depolarization noise spectrum with that of a standard single-mode fiber (SSMF). We found that off-center cores in the 4CF are dominantly affected by higher-order TRn,m modes rather than the TR2,m mode unlike in the center core, and the total power of the depolarization noise in the 4CF was almost the same as that in the SSMF. We also report measurement results for the GAWBS-induced depolarization noise in an uncoupled 19-core fiber with a 240μm cladding. The results indicate that the amounts of depolarization noise generated in the cores are almost identical. Finally, we evaluate the influence of GAWBS-induced polarization crosstalk (XT) on a coherent QAM transmission. We found that the XT limits the achievable multiplicity of the QAM signal to 64 in a transoceanic transmission with an MCF.

  • Forced Phase Modulation and Self Phase Modulation Effects in Dispersion-Tuned Mode-Locked Fiber Lasers

    Kohichi TAMURA  Eiji YOSHIDA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    195-200

    The effects of forced phase modulation (FPM) and self phase modulation (SPM) in dispersion tuned fiber lasers (DTFL) are examined. We show that FPM, such as chirp in the modulator, plays an important role in the pulse shaping because of the important role of dispersion in the cavity. In particular, compared to the case of zero FPM, significant pulse shortening can be obtained by using up-chirp modulation. The results suggest that modulators with large chirp parameters are desirable for DTFLs. When SPM is introduced, the pulse shapes differ greatly depending on the direction of the FPM. Significant deviations from Gaussian profiles are observed.

  • A 40 GHz Regeneratively and Harmonically Mode-Locked Erbium-Doped Fiber Laser and Its Longitudinal-Mode Characteristics

    Masato YOSHIDA  Taro YAGUCHI  Shinji HARADA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E87-C No:7
      Page(s):
    1166-1172

    The oscillation characteristics of a 40 GHz, 1-3 ps regeneratively and harmonically mode-locked erbium-doped fiber laser have been investigated in detail with respect to stability, linewidth, and mode hopping. We show that because the Q value of the microwave filter in the feedback loop is limited to around 1000, which is almost the same as that in a 10 GHz laser, the cavity length should not be greatly increased as this would result in as much as a fourfold increase in the number of longitudinal beat signals. We undertook a detailed stability analysis by using three cavity lengths, 60, 80, and 230 m. The 80 m long cavity greatly improved the long-term stability of the laser because the supermode noise was suppressed and there were not too many longitudinal modes. We measured the linewidth of the longitudinal mode of the laser using a heterodyne method, and it was less than 1 kHz. We also point out that there is a longitudinal mode hopping effect with time that is induced by very small changes in temperature.

  • Soliton Transmission Control for Ultra High Speed System

    Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    INVITED PAPER

      Vol:
    E78-C No:1
      Page(s):
    5-11

    Soliton transmission control has already proved to be an outstanding technique and enable a soliton to be transmit over one million kilometers. This technique is not only applicable to vast distances but also to shorter distances where the amplifier spacing is greater than that of conventional systems. A combination of time and frequency domain control eliminates the noise accumulation and timing jitter caused by soliton interaction and the Gordon-Haus effect, that are the main impediments to extending the transmission distance. In this paper we describe soliton control techniques applied over an astronomical transmission distance of 180,000,000 km, and to a terrestrial system with a large amplifier spacing of up to 100km. We also report the possibility of realizing a sub-tera bit/s soliton transmission system operating over more than 5,000 km in which the soliton self-frequency shift is controlled with the soliton control technique.

  • Plug-and-Play Optical Interconnection Using Digital Coherent Technology for Resilient Network Based on Movable and Deployable ICT Resource Unit

    Tetsuro KOMUKAI  Hirokazu KUBOTA  Toshikazu SAKANO  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1334-1341

    Triggered by the Great East Japan Earthquake in March 2011, the authors have been studying a resilient network whose key element is a movable and deployable ICT resource unit. The resilient network needs a function of robust and immediate connection to a wide area network active outside the damaged area. This paper proposes an application of digital coherent technology for establishing optical interconnection between the movable ICT resource unit and existing network nodes through a photonic network, rapidly, easily and with the minimum in manual work. We develop a prototype of a 100Gbit/s digital coherent transponder which is installable to our movable and deployable ICT resource unit and experimentally confirm the robust and immediate connection by virtue of the plug and play function.

  • 256 QAM Digital Coherent Optical Transmission Using Raman Amplifiers Open Access

    Masato YOSHIDA  Seiji OKAMOTO  Tatsunori OMIYA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    417-424

    To meet the increasing demand to expand wavelength division multiplexing (WDM) transmission capacity, ultrahigh spectral density coherent optical transmission employing multi-level modulation formats has attracted a lot of attention. In particular, ultrahigh multi-level quadrature amplitude modulation (QAM) has an enormous advantage as regards expanding the spectral efficiency to 10 bit/s/Hz and even approaching the Shannon limit. We describe fundamental technologies for ultrahigh spectral density coherent QAM transmission and present experimental results on polarization-multiplexed 256 QAM coherent optical transmission using heterodyne and homodyne detection with a frequency-stabilized laser and an optical phase-locked loop technique. In this experiment, Raman amplifiers are newly adopted to decrease the signal power, which can reduce the fiber nonlinearity. As a result, the power penalty was reduced from 5.3 to 2.0 dB. A 64 Gbit/s data signal is successfully transmitted over 160 km with an optical bandwidth of 5.4 GHz.

  • FOREWORD Open Access

    Masataka NAKAZAWA  

     
    FOREWORD

      Vol:
    E94-B No:2
      Page(s):
    375-375
  • FOREWORD

    Masataka NAKAZAWA  

     
    FOREWORD

      Vol:
    E81-C No:2
      Page(s):
    93-94
  • Demodulation Performance Comparison of High-Speed Coherent Nyquist Pulse Signal with Analog and Digital Demultiplexing Schemes

    Masato YOSHIDA  Kosuke KIMURA  Toshihiko HIROOKA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1059-1064

    We compare the demodulation performance of an analog OTDM demultiplexing scheme and digitized OTDM demultiplexing with an ultrahigh-speed digital signal processor in a single-channel OTDM coherent Nyquist pulse transmission. We evaluated the demodulation performance for 40, 80, and 160Gbaud OTDM signals with a baseline rate of 10Gbaud. As a result, we clarified that the analog scheme performs significantly better since the bandwidth for handling the demultiplexed signal is as narrow as 10GHz regardless of the symbol rate. This enables us to use a low-speed A/D converter (ADC) with a large effective number of bits (ENOB). On the other hand, in the digital scheme, the higher the symbol rate becomes, the more bandwidth the receiver requires. Therefore, it is necessary to use an ultrahigh-speed ADC with a low ENOB for a 160Gbaud signal. We measured the ENOB of the ultrahigh-speed ADC used in the digital scheme and showed that the measured ENOB was approximately 1.5 bits lower than that of the low-speed ADC used in the analog scheme. This 1.5-bit decrease causes a large degradation in the demodulation performance obtained with the digital demultiplexing scheme.

  • Recent Progress on Optical Soliton Communication

    Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    INVITED PAPER

      Vol:
    E74-A No:6
      Page(s):
    1373-1378

    Recently, most of the difficult problems which prevented the realization of soliton communication have been solved by using the so-called erbium-doped optical fiber amplifiers (EDFAs). These amplifiers can provide a larger gain with a lower pumping power than the Raman process. In this paper, we describe how we were able to realize an actual soliton transmission system which utilizes lumped amplifiers instead of distributed amplifiers. A data transmission experiment at 10 Gbit/s 300 km is presented.

  • Polarization Dependence of Soliton Interactions in Femtosecond Soliton Transmission

    Tomoki SUGAWA  Kenji KUROKAWA  Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    28-37

    The polarization dependence of femtosecond soliton-soliton interactions is investigated in detail. When the polarization direction of two solitons is orthogonal, the soliton interaction can be reduced in comparison to that for parallel polarization. The soliton self-frequency shift (SSFS) is still observed even in the orthogonal condition, but the quantity of the SSFS is much smaller than in the parallel condition. A stronger soliton interaction is observed between two solitons in an in-phase condition, than in an out-of-phase condition. The largest SSFS occurs in-phase with parallel polarization. The polarization dependence of femtosecond soliton interaction in a distributed erbium-doped fiber amplifier (DEDFA) is also investigated. It is shown that when the optical gain of the DEDFA is given adiabatically, the input pulse separation at which the first soliton occurs is less with orthogonal polarization. This is because the soliton pulse width is reduced due to the adiabatic soliton narrowing caused by the optical amplification.

  • Experimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator

    Kosuke KIMURA  Masato YOSHIDA  Keisuke KASAI  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1014-1022

    In this paper, we report an experimental and numerical analysis of ultrahigh-speed coherent Nyquist pulse transmission. First, we describe a low-nonlinearity dispersion compensator for ultrahigh-speed coherent Nyquist pulse transmission; it is composed of a chirped fiber Bragg grating (CFBG) and a liquid crystal on silicon (LCoS) device. By adopting CFBG instead of inverse dispersion fiber, the nonlinearity in a 160km transmission line was more than halved. Furthermore, by eliminating the group delay fluctuation of the CFBG with an LCoS device, the residual group delay was reduced to as low as 1.42ps over an 11nm bandwidth. Then, by using the transmission line with the newly constructed low-nonlinearity dispersion compensator, we succeeded in improving the BER performance of single-channel 15.3Tbit/s-160km transmission by one-third compared with that of a conventional dispersion-managed transmission line and obtained a spectral efficiency of 8.7bit/s/Hz. Furthermore, we numerically analyzed the BER performance of its Nyquist pulse transmission. The numerical results showed that the nonlinear impairment in the transmission line is the main factor limiting the transmission performance in a coherent Nyquist pulse transmission, which becomes more significant at higher baud rates.

  • Single-Channel 1.28 Tbit/s-525 km DQPSK Transmission Using Ultrafast Time-Domain Optical Fourier Transformation and Nonlinear Optical Loop Mirror

    Pengyu GUAN  Hans Christian Hansen MULVAD  Yutaro TOMIYAMA  Toshiyuki HIRANO  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    430-436

    We demonstrate a single-channel 1.28 Tbit/s-525 km transmission using OTDM of subpicosecond DQPSK signals. In order to cope with transmission impairments due to time-varying higher-order PMD, which is one of the major limiting factors in such a long-haul ultrahigh-speed transmission, we newly developed an ultrafast time-domain optical Fourier transformation technique in a round-trip configuration. By applying this technique to subpicosecond pulses, transmission impairments were greatly reduced, and BER performance below FEC limit was obtained with increased system margin.

  • Ultrahigh Speed Optical Soliton Communication Using Erbium-Doped Fiber Amplifiers

    Eiichi YAMADA  Kazunori SUZUKI  Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E76-B No:4
      Page(s):
    410-419

    Optical soliton transmissions at 10 and 20Gbit/s over 1000km with the use of erbium-doped fiber amplifiers are described in detail. For the 10Gbit/s experiment, a bit error rate (BER) of below 110-13 was obtained with 220-1 pseudorandom patterns and the power penalty was less than 0.1dB. In the 20Gbit/s experiment optical multiplexing and demultiplexing techniques were used and a BER of below 110-12 was obtained with 223-1 pseudorandom patterns under a penalty-free condition. A new technique for sending soliton pulses over ultralong distances is presented which incorporates synchronous shaping and retiming using a high speed optical modulator. Some experimental results over 1 million km at 7.210Gbit/s are described. This technique enables us to overcome the Gordon-Haus limit, the accumulation of amplified spontaneous emission (ASE), and the effect of interaction forces between adjacent solitons. It is also shown by computer runs and a simple analysis that a one hundred million km soliton transmission is possible by means of soliton transmission controls in the time and frequency domains. This means that limit-free transmission is possible.