The search functionality is under construction.

Author Search Result

[Author] Masayasu YAMAGUCHI(8hit)

1-8hit
  • Hyper-Media Photonic Information Networks as Future Network Service Platforms

    Masayasu YAMAGUCHI  Ken-ichi YUKIMATSU  Atsushi HIRAMATSU  Tohru MATSUNAGA  

     
    INVITED PAPER-Photonic Networking

      Vol:
    E82-C No:2
      Page(s):
    170-178

    This paper reviews the hyper-media photonic information network (HM-PIN) concept as a candidate of innovative future networks based on photonic technologies. The HM-PIN having a universal network interface integrates a variety of information services: telecommunications, newspapers, magazines, TV broadcasts and the growing collection of information servers. This network fundamentally offers three items: (1) bi-directional real-time channels with 10-Mbit/s-class or higher bit rate, (2) multipoint connections including multicasting/broadcasting, (3) high accessibility to information. These items are derived from the constraints of the conventional telephone networks and the Internet. By applying photonic technologies, the HM-PIN can be implemented as follows: The local network (the service platform) of the HM-PIN can be achieved by using a wavelength-division-multiplexing (WDM) broadcast-and-select (B&S) architecture that offers broadband multipoint connections (one-to-many, many-to-many) based on an inherent full-mesh topology. The WDM B&S local network will be able to support 10,000 to 100,000 channels (each with 10-Mbit/s or more bandwidth) by using optical and electrical multiplexing techniques. The backbone network can be constructed by combining photonic asynchronous transfer mode (ATM) switching systems and WDM transmission systems (including cross-connects). Two deployment scenarios of the HM-PIN (cost-oriented and service-oriented deployment scenarios) are also described for smoothly introducing the HM-PIN even before the cost issue is solved. The HM-PIN based on photonic technologies will be a future network service platform that greatly enhances communication services.

  • A High-Performance Switch Architecture for Free-Space Photonic Switching Systems

    Shigeo URUSHIDANI  Masayasu YAMAGUCHI  Tsuyoshi YAMAMOTO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-C No:2
      Page(s):
    246-253

    Design and evaluation of a high-performance switch architecture for free-space photonic switching systems is described. The switch is constructed of 22 switching elements and employs special multistage interconnection patterns. The connection setup algorithm and the control procedure at the switching elements are based on a "rerouting algorithm."" Performance analysis shows that the blocking probability of the switch is easily controlled by increasing the number of switching stages. Example implementations of this switch are shown in which birefringent plates, polarization controllers, etc. are used.

  • Design, Implementation and Application of the CAOSS Adaptive Online Storage System

    Tomohiro INOUE  Takayuki NAKAMURA  Motonori NAKAMURA  Masayasu YAMAGUCHI  

     
    PAPER-Software Platform Technologies

      Vol:
    E88-B No:3
      Page(s):
    911-922

    Communications in locally structured wireless networks, such as ad hoc networks, will play an important role for network services and applications in the ubiquitous networking environments of the future. Most of the time, however, mobile networks are used in much the same way as fixed networks: most of the time, mobile terminals merely access information which is stored in the backbone network. Applications based on the local exchange of information gathered or generated by mobile terminals will open up many novel possibilities. A new online storage system named CAOSS facilitates such exchange and constitutes a building block for various new applications. CAOSS is a server-less system that provides high availability of data in mobile and wireless network environments. We describe CAOSS and its application in a mobile video-information-sharing system named GT. Thanks to the good performance of CAOSS, the GT system gives users a convenient and easy way to share and accumulate video data in a wireless environment. We confirm that CAOSS has strong enough performance to deal with large volumes of video data.

  • A Flexible Personal Data Disclosure Method Based on Anonymity Quantification

    Miyuki IMADA  Masakatsu OHTA  Mitsuo TERAMOTO  Masayasu YAMAGUCHI  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3460-3469

    In this paper, we propose a method of controlling personal data disclosure based on LooM (Loosely Managed Privacy Protection Method) that prevents a malicious third party from identifying a person when he/she gets context-aware services using personal data. The basic function of LooM quantitatively evaluates the anonymity level of a person who discloses his/her data, and controls the personal-data disclosure according to the level. LooM uses a normalized entropy value for quantifying the anonymity. In this version of the LooM, the disclosure control is accomplished by adding two new functions. One is an abstracting-function that generates abstractions (or summaries) from the raw personal data to reduce the danger that the malicious third party might identify the person who discloses his/her personal data to the party. The other function is a unique-value-masking function that hides the unique personal data in the database. These functions enhance the disclosure control mechanism of LooM. We evaluate the functions using simulation data and questionnaire data. Then, we confirm the effectiveness of the functions. Finally, we show a prototype of a crime-information-sharing service to confirm the feasibility of these functions.

  • Recent Free-Space Photonic Switches

    Masayasu YAMAGUCHI  Ken-ichi YUKIMATSU  

     
    INVITED PAPER

      Vol:
    E77-B No:2
      Page(s):
    128-138

    This paper briefly reviews recent studies on free-space photonic switches, and discusses classifications, applications and technical issues to be solved. The free-space photonic switch is a switch that uses light beam interconnections based on free-space optics instead of guided-wave optics. A feature of the free-space switch is its high-density three-dimensional structure that enables compact large-scale switches to be created. In this paper, the free-space switches are classified by their various attributes such as logical network configuration, path-establishment method, number of physical stages, signal-waveform transmission form, interconnection optics and so on. The logical network configuration (topological geometry or topology) is strongly related to the advantages of the free-space switches over the guided-wave switches. The path-establishment method (path-shifting/branching-and-gating) and the number of physical stages (single-stage/multistage) are related to physical switching characteristics. Signal-waveform transmission form (analog/digital) is related to switch application. Interconnection optics (imaging system/micro-beam system) is related to the density and volume of the switching fabric. Examples of the free-space switches (single-stage, analog multistage, digital multistage and photonic ATM switches) are described. Possible applications for analog switches are subscriber-line concentrators, inter-module connectors, and switching networks for parallel or distributed computer systems. Those for digital switches include multistage space-division switches in time-division circuit-switching or packet switching systems (including asynchronous transfer mode [ATM] switching system) for both communications switching systems and parallel/distributed computer systems. Technical issues of the free-space switches (system, device, assembly technique) must be solved before creating practical systems. In particular, the assembly technique is a key issue of the free-space switches.

  • A High-Performance Switch Architecture for Free-Space Photonic Switching Systems

    Shigeo URUSHIDANI  Masayasu YAMAGUCHI  Tsuyoshi YAMAMOTO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    298-305

    Design and evaluation of a high-performance switch architecture for free-space photonic switching systems is described. The switch is constructed of 22 switching elements and employs special multistage interconnection patterns. The connection setup algorithm and the control procedure at the switching elements are based on a "rerouting algorithm." Performance analysis shows that the blocking probability of the switch is easily controlled by increasing the number of switching stages. Example implementations of this switch are shown in which birefringent plates, polarization controllers, etc. are used.

  • Hyper-Media Photonic Information Networks as Future Network Service Platforms

    Masayasu YAMAGUCHI  Ken-ichi YUKIMATSU  Atsushi HIRAMATSU  Tohru MATSUNAGA  

     
    INVITED PAPER-Photonic Networking

      Vol:
    E82-B No:2
      Page(s):
    222-230

    This paper reviews the hyper-media photonic information network (HM-PIN) concept as a candidate of innovative future networks based on photonic technologies. The HM-PIN having a universal network interface integrates a variety of information services: telecommunications, newspapers, magazines, TV broadcasts and the growing collection of information servers. This network fundamentally offers three items: (1) bi-directional real-time channels with 10-Mbit/s-class or higher bit rate, (2) multipoint connections including multicasting/broadcasting, (3) high accessibility to information. These items are derived from the constraints of the conventional telephone networks and the Internet. By applying photonic technologies, the HM-PIN can be implemented as follows: The local network (the service platform) of the HM-PIN can be achieved by using a wavelength-division-multiplexing (WDM) broadcast-and-select (B&S) architecture that offers broadband multipoint connections (one-to-many, many-to-many) based on an inherent full-mesh topology. The WDM B&S local network will be able to support 10,000 to 100,000 channels (each with 10-Mbit/s or more bandwidth) by using optical and electrical multiplexing techniques. The backbone network can be constructed by combining photonic asynchronous transfer mode (ATM) switching systems and WDM transmission systems (including cross-connects). Two deployment scenarios of the HM-PIN (cost-oriented and service-oriented deployment scenarios) are also described for smoothly introducing the HM-PIN even before the cost issue is solved. The HM-PIN based on photonic technologies will be a future network service platform that greatly enhances communication services.

  • Analog Free-Space Optical Switch Structure Based on Cascaded Beam Shifters

    Masayasu YAMAGUCHI  Tohru MATSUNAGA  Seiiti SHIRAI  Ken-ichi YUKIMATSU  

     
    PAPER

      Vol:
    E77-B No:2
      Page(s):
    163-173

    This paper describes a new free-space optical switch structure based on cascaded beam shifters (each consists of a liquid-crystal polarization controller array and a birefringent plate). This structure comprises 2-input, 2-output switching elements that are locally connected by links. It is applicable to a variety of switching networks, such as a Clos network. The switching network based on this structure is an analog switch that is transparent to signal format, bit rate, and modulation type, so it can handle various types of optical signals. Theoretical feasibility studies indicate that compact large-scale switches (i.e., 100-1000 ports) with relay lens systems can be implemented using beam shifters with a 0.4-dB insertion loss and a 30-dB extinction ratio. Experimental feasibility studies indicate that a 1024-cell beam shifter module with a 0.5-dB insertion loss and a 23-dB extinction ratio is possible at present. An alignment-free assembly technique using precise alignment guides is also confirmed. An experimental 8-stage, 1024-input 256-output concentrator shows low insertion loss characteristics (6.8dB on average) owing to the low-loss beam shifters and the alignment-free assembly technique. Practical switching networks mainly require the improvement of the extinction ratio of the beam shifter module and the development of a fiber pig-tailing technique. This switch structure is applicable to transparent switching networks such as subscriber line concentrators and inter-module connectors.