1-3hit |
Yo-Tak SONG Hai-Young LEE Masayoshi ESASHI
This paper presents the design, fabrication and characterization of a low actuation voltage capacitive shunt RF-MEMS switch for microwave and millimeter-wave applications based on a corrugated electrostatic actuated bridge suspended over a concave structure of coplanar waveguide (CPW), with sputtered nickel as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon (HRS) substrate using IC compatible processes for modular integration in a communication devices. The residual stress is very low because having both ends corrugated structure of the bridge in concave structure. The residual stress is calculated about 3-15 MPa in corrugated bridge and 30 MPa in flat bridge. The corrugated bridge of the concave structure requires lower actuation voltages 20-80 V than 50-100 V of the flat bridge of the planar structure in 0.3 to 1.0 µm thick Ni capacitive shunt RF-MEMS switch, in insertion loss 1.0 dB, return loss 12 dB, power loss 10 dB and isolation 28 dB from 0.5 up to 40 GHz. The residual stress of the bridge material and structure is critical to lower the actuation voltage.
Takahiro NISHIMOTO Shuichi SHOJI Kazuyuki MINAMI Masayoshi ESASHI
We developed piezoresistors with an intrinsic compensation of the offset temperature characteristics. High energy ion implantation was applied to fabricate this type of piezoresistor. The dopant profile of the buried piezoresistor resembles to that of the junction gate field effect transistor (JFET). The buried layer corresponds to a channel of JFET, and the substrate bias corresponds to the gate voltage. Owing to the independent temperature varying parameters, i.e., width of the depletion layer and carrier mobility in the channel, the drain current of the JFET has a temperature independent point at an appropriate gate source voltage. The effect was used in the new type of buried piezoresistor which has a driving point of zero temperature coefficient of resistance at an appropriate gate source voltage.
Guoqiang ZHANG Awinash ANAND Kousuke HIKICHI Shuji TANAKA Masayoshi ESASHI Ken-ya HASHIMOTO Shinji TANIGUCHI Ramesh K. POKHAREL
A 1.9GHz film bulk acoustic resonator (FBAR)-based low-phase-noise complementary cross-coupled voltage-controlled oscillator (VCO) is presented. The FBAR-VCO is designed and fabricated in 0.18µm CMOS process. The DC latch and the low frequency instability are resolved by employing the NMOS source coupling capacitor and the DC blocked cross-coupled pairs. Since no additional voltage headroom is required, the proposed FBAR-VCO can be operated at a low power supply voltage of 1.1V with a wide voltage swing of 0.9V. An effective phase noise optimization is realized by a reasonable trade-off between the output resistance and the trans-conductance of the cross-coupled pairs. The measured performance shows the proposed FBAR-VCO achieves a phase noise of -148dBc/Hz at 1MHz offset with a figure of merit (FoM) of -211.6dB.