The search functionality is under construction.

Author Search Result

[Author] Masayoshi SHIMAMURA(5hit)

1-5hit
  • A Design and Prototyping of In-Network Processing Platform to Enable Adaptive Network Services

    Masayoshi SHIMAMURA  Takeshi IKENAGA  Masato TSURU  

     
    PAPER

      Vol:
    E96-D No:2
      Page(s):
    238-248

    The explosive growth of the usage along with a greater diversification of communication technologies and applications imposes the Internet to manage further scalability and diversity, requiring more adaptive and flexible sharing schemes of network resources. Especially when a number of large-scale distributed applications concurrently share the resource, efficacy of comprehensive usage of network, computation, and storage resources is needed from the viewpoint of information processing performance. Therefore, a reconsideration of the coordination and partitioning of functions between networks (providers) and applications (users) has become a recent research topic. In this paper, we first address the need and discuss the feasibility of adaptive network services by introducing special processing nodes inside the network. Then, a design and an implementation of an advanced relay node platform are presented, by which we can easily prototype and test a variety of advanced in-network processing on Linux and off-the-shelf PCs. A key feature of the proposed platform is that integration between kernel and userland spaces enables to easily and quickly develop various advanced relay processing. Finally, on the top of the advanced relay node platform, we implement and test an adaptive packet compression scheme that we previously proposed. The experimental results show the feasibility of both the developed platform and the proposed adaptive packet compression.

  • Compressing Packets Adaptively Inside Networks

    Masayoshi SHIMAMURA  Hiroyuki KOGA  Takeshi IKENAGA  Masato TSURU  

     
    PAPER

      Vol:
    E93-B No:3
      Page(s):
    501-515

    Introducing adaptive online data compression at network-internal nodes is considered for alleviating traffic congestion on the network. In this paper, we assume that advanced relay nodes, which possess both a relay function (network resource) and a processing function (computational and storage resources), are placed inside the network, and we propose an adaptive online lossless packet compression scheme utilized at these nodes. This scheme selectively compresses a packet according to its waiting time in the queue during congestion. Through preliminary investigation using actual traffic datasets, we investigate the compression ratio and processing time of packet-by-packet compression in actual network environments. Then, by means of computer simulations, we show that the proposed scheme reduces the packet delay time and discard rate and investigate factors necessary in achieving efficient packet relay.

  • Kyushu-TCP: Improving Fairness of High-Speed Transport Protocols

    Suguru YOSHIMIZU  Hiroyuki KOGA  Katsushi KOUYAMA  Masayoshi SHIMAMURA  Kazumi KUMAZOE  Masato TSURU  

     
    PAPER

      Vol:
    E93-B No:5
      Page(s):
    1104-1112

    With the emergence of bandwidth-greedy application services, high-speed transport protocols are expected to effectively and aggressively use large amounts of bandwidth in current broadband and multimedia networks. However, when high-speed transport protocols compete with other standard TCP flows, they can occupy most of the available bandwidth leading to disruption of service. To deploy high-speed transport protocols on the Internet, such unfair situations must be improved. In this paper, therefore, we propose a method to improve fairness, called Kyushu-TCP (KTCP), which introduces a non-aggressive period in the congestion avoidance phase to give other standard TCP flows more chances of increasing their transmission rates. This method improves fairness in terms of the throughput by estimating the stably available bandwidth-delay product and adjusting its transmission rate based on this estimation. We show the effectiveness of the proposed method through simulations.

  • Splitting TCP Connections Adaptively Inside Networks

    Masayoshi SHIMAMURA  Takeshi IKENAGA  Masato TSURU  

     
    LETTER

      Vol:
    E95-D No:2
      Page(s):
    542-545

    The explosive growth of Internet usage has caused problems for the current Internet in terms of traffic congestion within networks and performance degradation of end-to-end flows. Therefore, a reconsideration of the current Internet has begun and is being actively discussed worldwide with the goals of enabling efficient share of limited network resources (i.e., the link bandwidth) and improved performance. To directly address the inefficiency of TCP's congestion mitigation solely on the end-to-end basis, in this paper we propose an adaptive split connection scheme on advanced relay nodes; this scheme dynamically splits end-to-end TCP connections on the basis of congestion status in output links. Through simulation evaluations, we examine the effectiveness and potential of the proposed scheme.

  • Elastic and Adaptive Resource Orchestration Architecture on 3-Tier Network Virtualization Model

    Masayoshi SHIMAMURA  Hiroaki YAMANAKA  Akira NAGATA  Katsuyoshi IIDA  Eiji KAWAI  Masato TSURU  

     
    PAPER-Information Network

      Pubricized:
    2016/01/18
      Vol:
    E99-D No:4
      Page(s):
    1127-1138

    Network virtualization environments (NVEs) are emerging to meet the increasing diversity of demands by Internet users where a virtual network (VN) can be constructed to accommodate each specific application service. In the future Internet, diverse service providers (SPs) will provide application services on their own VNs running across diverse infrastructure providers (InPs) that provide physical resources in an NVE. To realize both efficient resource utilization and good QoS of each individual service in such environments, SPs should perform adaptive control on network and computational resources in dynamic and competitive resource sharing, instead of explicit and sufficient reservation of physical resources for their VNs. On the other hand, two novel concepts, software-defined networking (SDN) and network function virtualization (NFV), have emerged to facilitate the efficient use of network and computational resources, flexible provisioning, network programmability, unified management, etc., which enable us to implement adaptive resource control. In this paper, therefore, we propose an architectural design of network orchestration for enabling SPs to maintain QoS of their applications aggressively by means of resource control on their VNs efficiently, by introducing virtual network provider (VNP) between InPs and SPs as 3-tier model, and by integrating SDN and NFV functionalities into NVE framework. We define new north-bound interfaces (NBIs) for resource requests, resource upgrades, resource programming, and alert notifications while using the standard OpenFlow interfaces for resource control on users' traffic flows. The feasibility of the proposed architecture is demonstrated through network experiments using a prototype implementation and a sample application service on nation-wide testbed networks, the JGN-X and RISE.