The search functionality is under construction.

Author Search Result

[Author] Masayuki HASHIMOTO(3hit)

1-3hit
  • Privacy-Preserving Correlation Coefficient

    Tomoaki MIMOTO  Hiroyuki YOKOYAMA  Toru NAKAMURA  Takamasa ISOHARA  Masayuki HASHIMOTO  Ryosuke KOJIMA  Aki HASEGAWA  Yasushi OKUNO  

     
    PAPER

      Pubricized:
    2023/02/08
      Vol:
    E106-D No:5
      Page(s):
    868-876

    Differential privacy is a confidentiality metric and quantitatively guarantees the confidentiality of individuals. A noise criterion, called sensitivity, must be calculated when constructing a probabilistic disturbance mechanism that satisfies differential privacy. Depending on the statistical process, the sensitivity may be very large or even impossible to compute. As a result, the usefulness of the constructed mechanism may be significantly low; it might even be impossible to directly construct it. In this paper, we first discuss situations in which sensitivity is difficult to calculate, and then propose a differential privacy with additional dummy data as a countermeasure. When the sensitivity in the conventional differential privacy is calculable, a mechanism that satisfies the proposed metric satisfies the conventional differential privacy at the same time, and it is possible to evaluate the relationship between the respective privacy parameters. Next, we derive sensitivity by focusing on correlation coefficients as a case study of a statistical process for which sensitivity is difficult to calculate, and propose a probabilistic disturbing mechanism that satisfies the proposed metric. Finally, we experimentally evaluate the effect of noise on the sensitivity of the proposed and direct methods. Experiments show that privacy-preserving correlation coefficients can be derived with less noise compared to using direct methods.

  • Tile Size Conversion Algorithm for Tiled Wavelet Image

    Masayuki HASHIMOTO  Kenji MATSUO  Atsushi KOIKE  Yasuyuki NAKAJIMA  

     
    PAPER-Image/Visual Signal Processing

      Vol:
    E87-A No:8
      Page(s):
    1901-1912

    This paper proposes the tile size conversion method for the wavelet image transcoding gateway and a set of methods to reduce the tile boundary artifacts caused by the conversion. In the wavelet image coding system represented by JPEG 2000, pictures are usually divided into one or more tiles and each tile is then transformed separately. On low memory terminals such as mobile terminals, some decoders are likely to have limits on what tile sizes they can decode. Assuming a system using these limited decoders, methods were investigated for converting the tile size quickly and automatically at the gateway when image data with a non-decodable tile size is received at the gateway from another system. Furthermore, tile boundary artifacts reduction methods are investigated. This paper verifies the validity of the proposed scheme by implementing it with a (5, 3) reversible filter and a (9, 7) irreversible filter. In addition, we implemented the tile size conversion gateway and evaluated the performance of the processing time. The results show the validity of the conversion gateway.

  • JPEG 2000 Encoding Method for Reducing Tiling Artifacts

    Masayuki HASHIMOTO  Kenji MATSUO  Atsushi KOIKE  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E88-D No:12
      Page(s):
    2839-2848

    This paper proposes an effective JPEG 2000 encoding method for reducing tiling artifacts, which cause one of the biggest problems in JPEG 2000 encoders. Symmetric pixel extension is generally thought to be the main factor in causing artifacts. However this paper shows that differences in quantization accuracy between tiles are a more significant reason for tiling artifacts at middle or low bit rates. This paper also proposes an algorithm that predicts whether tiling artifacts will occur at a tile boundary in the rate control process and that locally improves quantization accuracy by the original post quantization control. This paper further proposes a method for reducing processing time which is yet another serious problem in the JPEG 2000 encoder. The method works by predicting truncation points using the entropy of wavelet transform coefficients prior to the arithmetic coding. These encoding methods require no additional processing in the decoder. The experiments confirmed that tiling artifacts were greatly reduced and that the coding process was considerably accelerated.