1-2hit |
Md. Abdur RAHMAN Azril HANIZ Minseok KIM Jun-ichi TAKADA
Automatic modulation classification (AMC) involves extracting a set of unique features from the received signal. Accuracy and uniqueness of the features along with the appropriate classification algorithm determine the overall performance of AMC systems. Accuracy of any modulation feature is usually limited by the blindness of the signal information such as carrier frequency, symbol rate etc. Most papers do not sufficiently consider these impairments and so do not directly target practical applications. The AMC system proposed herein is trained with probable input signals, and the appropriate decision tree should be chosen to achieve robust classification. Six unique features are used to classify eight analog and digital modulation schemes which are widely used by low frequency mobile emergency radios around the globe. The Proposed algorithm improves the classification performance of AMC especially for the low SNR regime.
Azril HANIZ Minseok KIM Md. Abdur RAHMAN Jun-ichi TAKADA
Automatic modulation classification (AMC) is an important function of radio surveillance systems in order to identify unknown signals. Many previous works on AMC have utilized signal cyclostationarity, particularly spectral correlation density (SCD), but many of them fail to address several implementation issues, such as the assumption of perfect knowledge of the symbol rate. In this paper, we discuss several practical issues, e.g. cyclic frequency mismatch, which may affect the SCD, and propose compensation techniques to overcome those issues. We also propose a novel feature extraction technique from the SCD, which utilizes the SCD of not only the original received signal, but also the squared received signal. A symbol rate estimation technique which complements the feature extraction is also proposed. Finally, the classification performance of the system is evaluated through Monte Carlo simulations using a wide variety of modulated signals, and simulation results show that the proposed technique can estimate the symbol rate and classify modulation with a probability of above 0.9 down to SNRs of 5 dB.