The search functionality is under construction.

Author Search Result

[Author] Meng-Fu TSAI(2hit)

1-2hit
  • kP2PADM: An In-Kernel Architecture of P2P Management Gateway

    Ying-Dar LIN  Po-Ching LIN  Meng-Fu TSAI  Tsao-Jiang CHANG  Yuan-Cheng LAI  

     
    PAPER-Computer Systems

      Vol:
    E91-D No:10
      Page(s):
    2398-2405

    Managing increasing traffic from Instant Messengers and P2P applications is becoming more important nowadays. We present an in-kernel architecture of management gateway, namely kP2PADM, built upon open-source packages with several modifications and design techniques. First, the in-kernel design streamlines the data path through the gateway. Second, the dual-queue buffer eliminates head-of-line blocking for multiple connections. Third, a connection cache reduces useless reconnection attempts from the peers. Fourth, a fast-pass mechanism avoids slowing down the TCP transmission. The in-kernel design approximately doubles the throughput of the design in the user space. The internal benchmarks also analyze the impact of each function on performance.

  • Highly Efficient Sparse Multipath Channel Estimator with Chu-Sequence Preamble for Frequency-Domain MIMO DFE Receiver

    Jeng-Kuang HWANG  Rih-Lung CHUNG  Meng-Fu TSAI  Juinn-Horng DENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:8
      Page(s):
    2103-2110

    In this paper, a sparse multipath channel estimation algorithm is proposed for multiple-input multiple-output (MIMO) single-carrier systems with frequency-domain decision feedback equalizer (FD-DFE). This algorithm exploits the orthogonality of an optimal MIMO preamble based on repeated, phase-rotated, Chu (RPC) sequences, leading to a dramatic reduction in computation. Furthermore, the proposed algorithm employs an improved non-iterative procedure utilizing the Generalized AIC criterion (GAIC), resulting in further computational saving and performance improvement. The proposed scheme is simulated for 802.16d SCa-PHY and SUI-5 sparse channel model under a 22 spatial multiplexing scenario, with the MIMO FD-DFE as the receiver. The result shows that the channel estimation accuracy is significantly improved, and the performance loss compared to the known channel case is only 0.7 dB at the BER of 10-3.