The search functionality is under construction.

Author Search Result

[Author] Juinn-Horng DENG(11hit)

1-11hit
  • A Differential MIMO SC-FDE Transceiver Design over Multipath Fast Fading Channels

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1939-1942

    In this paper, we propose a new differential MIMO single-carrier system with frequency-domain equalization (SC-FDE) aided by the insertion of cyclic prefix. This block transmission system not only inherits all the merits of the SISO SC-FDE system, but is also equipped with a differential space-time block coding (DSTBC) such as to combat the fast-changing frequency selective fading channels without the needs to estimate and then compensate the channel effects. Hence, for practical applications, it has the additional merits of decoding simplicity and robustness against high mobility transmission environments. Computer simulations show that the proposed system can provide diversity benefit as the non-differential system does, while greatly reducing the receiver complexity.

  • Low PAPR Precoding Design with Dynamic Channel Assignment for SCBT Communication Systems

    Juinn-Horng DENG  Sheng-Yang HUANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:11
      Page(s):
    3580-3584

    The single carrier block transmission (SCBT) system has become one of the most popular modulation systems because of its low peak to average power ratio (PAPR). This work proposes precoding design on the transmitter side to retain low PAPR, improve performance, and reduce computational complexity on the receiver side. The system is designed according to the following procedure. First, upper-triangular dirty paper coding (UDPC) is utilized to pre-cancel the interference among multiple streams and provide a one-tap time-domain equalizer for the SCBT system. Next, to solve the problem of the high PAPR of the UDPC precoding system, Tomlinson-Harashima precoding (THP) is developed. Finally, since the UDPC-THP system is degraded by the deep fading channels, the dynamic channel on/off assignment by the maximum capacity algorithm (MCA) and minimum BER algorithm (MBA) is proposed to enhance the bit error rate (BER) performance. Simulation results reveal that the proposed precoding transceiver can provide excellent BER and low PAPR performances for the SCBT system over a multipath fading channel.

  • Low Complexity Hybrid Smart Antenna with Directional Elements over Frequency Selective Fading Channel

    Juinn-Horng DENG  Nuri CELIK  Zhengqing YUN  Magdy F. ISKANDER  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3610-3613

    In this paper, a low complexity hybrid smart antenna system with directional elements and reduced-size digital beamformer is proposed to combat the inter-symbol interference (ISI) problem over frequency-selective fading channel. For the conventional smart antenna system with omni-directional elements, it utilizes the full-size digital beamformer to suppress interference and obtain the optimum performance. However, the proposed hybrid smart antenna system with directional elements can be split the linear array receiver for two branches. One branch is the subarray system with non ISI interference, which can be used for maximum ratio combiner (MRC). Another branch is the reduced-size subarray system with the ISI interference, which can use the reduced-size optimum beamformer to suppress interference. Finally, the output signals of the two branches can be combined to detect the transmitted signals. Simulation results confirm that the proposed low complexity system can provide robust performance under the multipath fading channel.

  • A Space-Time Multi-Carrier CDMA Receiver with Blind Adaptive MAI Suppression

    Juinn-Horng DENG  Ta-Sung LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:8
      Page(s):
    1490-1498

    A space-time (ST) receiver is proposed for multiple access interference (MAI) and narrowband interference (NBI) suppression, and multipath diversity reception in wireless multi-carrier CDMA communications incorporating antenna arrays. The scheme involves three stages. First, an adaptive matched filter is attached to each finger at each antenna to combat the MAI. Second, an adaptive beamformer is constructed for each finger which provides effective reception of the signal of interest (SOI) and suppression of time-varying NBI. Finally, beamformer output data from different fingers are combined to capture the signal multipath components coherently. The proposed ST receiver is shown to perform reliably under strong interference, and outperform the ST MMSE receiver with pilot symbols aided channel estimation.

  • A Low-PAPR Multiplexed MC-CDMA System with Enhanced Data Rate and Link Quality

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    135-143

    Recently, a new multi-carrier CDMA (MC-CDMA) system with cyclic-shift orthogonal keying (CSOK) has been proposed and shown to be more spectral and power efficient than conventional MC-CDMA systems. In this paper, a novel extension called the multiplexed CSOK (MCSOK) MC-CDMA system is proposed to further increase the data rate while maintaining a low peak-to-average power ratio (PAPR). First, the data stream is divided into multiple parallel substreams that are mapped into QPSK-CSOK symbols in terms of cyclic shifted Chu sequences. Second, these sequences are repeated, modulated, summed, and placed on IFFT subcarriers, resulting in a constant-modulus multiplexed signal that preserves the desired orthogonality among substreams. The receiver performs frequency-domain equalization and uses efficient demultiplexing, despreading, and demapping schemes to detect the modulation symbols. Furthermore, an alternate MCSOK system configuration with high link quality is also presented. Simulations show that the proposed MCSOK system attains lower PAPR and BER, as compared to conventional MC-CDMA system using Walsh codes. Under a rich multipath environment, the high link quality configuration exhibits excellent performance with both diversity gain and MCSOK modulation gain.

  • A Low Complexity Precoding Transceiver Design for Double STBC System

    Juinn-Horng DENG  Shiang-Chyun JHAN  Sheng-Yang HUANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1075-1080

    A precoding design for double space-time block coding (STBC) system is investigated in this paper, i.e., the joint processing of STBC and dirty paper coding (DPC) techniques. These techniques are used for avoiding dual spatial streams interference and improving the transmitter diversity. The DPC system is interference free on multi-user or multi-antenna. The STBC transceiver can provide the transmit diversity. Due to the benefits about offered by the STBC and DPC techniques, we propose a new scheme called STBC-DPC system. The transceiver design involves the following procedures. First, the ordering QR decomposition of channel matrix and the maximum likelihood (ML) one-dimensional searching algorithm are proposed to acquire reliable performance. Next, the channel on/off assignment using the water filling algorithm, i.e., maximum capacity criterion, is proposed to overcome the deep fading channel problem. Finally, the STBC-DPC system with the modulus operation to limit the transmit signal level, i.e., the Tomlinson-Harashima precoding (THP) scheme, is proposed to achieve low peak-to-average power ratio (PAPR) performance. Simulation results confirm that the proposed STBC-DPC/THP with water filling ML algorithm can provide the low PAPR and excellent bit error rate (BER) performances.

  • Time-Frequency Multiplex Estimator Design with Joint Tx IQ Imbalance, CFO, Channel Estimation, and Compensation for Multi-Carrier Systems

    Juinn-Horng DENG  Kuo-Tai FENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2322-2329

    A low-complexity time-frequency multiplex estimator and low-complexity equalizer transceiver design are proposed to combat the problems of RF impairment associated with zero-IF transceiver of multi-carrier systems. Moreover, the proposed preambles can estimate the transmitter (TX) in-phase and quadrature-phase (IQ) imbalance, carrier frequency offset (CFO), and channel impulse response parameters. The proposed system has two parts. First, all parameters of the impairments are estimated by the designed time-frequency multiplex estimator. Second, the estimated parameters are used to compensate the above problems and detect the transmitted signal with low complexity. Simulation results confirm that the proposed estimator performs reliably with respect to IQ imbalance, CFO, and multipath fading channel effects.

  • Novel Precoder Design with Generalized Side-Information Cancellation for Multiuser MIMO Downlink Systems

    Juinn-Horng DENG  Kuang-Min LIN  Meng-Lin KU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/21
      Vol:
    E100-B No:10
      Page(s):
    1911-1920

    A novel generalized side-information cancellation (GSIC) precoder is proposed for multiuser multi-input multi-output (MIMO) downlink systems with channel state information at the transmitter. The proposed transceiver involves the following stages. First, a minimum mean square error (MMSE) based channel inversion (MMSE-CI) technique is utilized to suppress multiuser broadcast interference. By using a GSIC technique, it can further reduce the residual multiuser interference and the noise induced by MMSE-CI preprocessing. Next, with a singular value decomposition method, the spatial stream interference of each user is suppressed by the pre-processing and post-processing eigenvector matrices. Finally, the proposed precoder can be extended to joint water filling and diagonal loading methods for performance enhancement. For the correlated MIMO channels, signal subspace and antenna selection methods, incorporating the proposed GSIC precoder, are further designed to maximize the sum rate performance. Simulation results show that the proposed GSIC precoder outperforms the conventional precoders. Besides, simulation results confirm that the proposed GSIC precoder with water filling, diagonal loading, and signal subspace techniques exhibits excellent performance.

  • Time-Frequency Cyclic Shift Keying Transceiver for Low PAPR MC-CDMA Uplink System over Multipath Fading Channels

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:12
      Page(s):
    3651-3655

    A low peak-to-average-power-ratio (PAPR) transceiver with a time-frequency cyclic shift orthogonal keying (TF-CSOK) technique is proposed for the uplink multi-carrier CDMA (MC-CDMA) system over multiple access interference (MAI) and multipath interference (MPI) channels. The low complexity structure of the TF-CSOK MC-CDMA system is designed to involve the FCSOK and TCSOK techniques to combat MPI and MAI effects, respectively. In particular, at the besestation, the multiuser detector employs the maximum likelihood (ML) rule and the TFSOK despreading and demapping techniques to acquire the M-ary modulation gain and diversity gain. Simulation results show that the multuser receiver has the robustness against strong MAI. Moreover, it outperforms the conventional single-carrier frequency division multiple access (SC-FDMA) system and the conventional MC-CDMA system under MAI and MPI environments.

  • A Differential Cross-Correlation Cell Search Algorithm for IEEE 802.16e OFDMA Systems

    Juinn-Horng DENG  Jeng-Kuang HWANG  Shu-Min LIAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    587-590

    A differential cross-correlation cell ID identification algorithm is proposed for IEEE 802.16e OFDMA cellular system. The cell ID represents the number of the preamble selected by the base station in downlink mode. First, we construct the downlink (DL) preamble structure and signal model with carrier frequency offset (CFO) and channel effects. Next, in order to achieve the initial synchronization, a differential receiver with cross correlation for all preamble patterns is proposed to search for cell ID. Simulation results confirm that the proposed structure is suitable for ITU fading channels and outperforms the conventional cell search system.

  • Highly Efficient Sparse Multipath Channel Estimator with Chu-Sequence Preamble for Frequency-Domain MIMO DFE Receiver

    Jeng-Kuang HWANG  Rih-Lung CHUNG  Meng-Fu TSAI  Juinn-Horng DENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:8
      Page(s):
    2103-2110

    In this paper, a sparse multipath channel estimation algorithm is proposed for multiple-input multiple-output (MIMO) single-carrier systems with frequency-domain decision feedback equalizer (FD-DFE). This algorithm exploits the orthogonality of an optimal MIMO preamble based on repeated, phase-rotated, Chu (RPC) sequences, leading to a dramatic reduction in computation. Furthermore, the proposed algorithm employs an improved non-iterative procedure utilizing the Generalized AIC criterion (GAIC), resulting in further computational saving and performance improvement. The proposed scheme is simulated for 802.16d SCa-PHY and SUI-5 sparse channel model under a 22 spatial multiplexing scenario, with the MIMO FD-DFE as the receiver. The result shows that the channel estimation accuracy is significantly improved, and the performance loss compared to the known channel case is only 0.7 dB at the BER of 10-3.