1-6hit |
A low complexity multi-user receiver with blind channel estimation and multiple access interference (MAI) suppression is proposed for a CDMA system under multipath fading and frequency offset. The design of the receiver involves the following procedure. First, a method of joint MAI suppression and channel estimation is developed based on the generalized sidelobe canceller (GSC) technique. In particular, channel estimates are obtained blindly in the form of the effective composite signature vectors (CSV) of the users. Second, a low-complexity partially adaptive (PA) realization of the receiver is proposed which incorporates reduced-rank processing based on the information of multi-user CSV's. By a judiciously designed decorrelating procedure, a new PA receiver is obtained with a much lower complexity. Finally, pilot symbols assisted frequency offset estimation and channel gain compensation give the estimate of users' symbols. Further performance enhancement is achieved by a decision aided scheme in which the signal is reconstructed and subtracted from the receiver input data, leading to significantly faster convergence. The proposed receiver is shown to be robust to multipath fading and frequency offset, and achieves nearly the same performance of the optimal maximum SINR and MMSE receivers with a much lower overhead for pilot symbols.
Chih-Yuan LIN Jwo-Yuh WU Ta-Sung LEE
Conventional orthogonal frequency division multiplexing (OFDM) system utilizes cyclic prefix (CP) to remove the channel-induced inter-symbol interference (ISI) at the cost of lower spectral efficiency. In this paper, a generalized sidelobe canceller (GSC) based equalizer for ISI suppression is proposed for uplink multi-antenna OFDM systems without CP. Based on the block representation of the CP-free OFDM system, there is a natural formulation of the ISI suppression problem under the GSC framework. By further exploiting the signal and ISI signature matrix structures, a computationally efficient partially adaptive (PA) implementation of the GSC-based equalizer is proposed for complexity reduction. The proposed scheme can be extended for the design of a pre-equalizer, which pre-suppresses the ISI and realizes CP-free downlink transmission to ease the computational burden of the mobile unit (MU). Simulation results show that the proposed GSC-based solutions yield equalization performances almost identical to that obtained by the conventional CP-based OFDM systems and are highly resistant to the increase in channel delay spread.
Chung-Lien HO Gau-Joe LIN Ta-Sung LEE
A reduced complexity multiple-input multiple-output (MIMO) equalizer with ordered successive interference cancellation (OSIC) is proposed for combating intersymbol interference (ISI) and cochannel interference (CCI) over frequency-selective multipath channels. It is developed as a reduced-rank realization of the conventional MMSE decision feedback equalizer (DFE). In particular, the MMSE weight vectors at each stage of OSIC are computed based on the generalized sidelobe canceller (GSC) technique and reduced-rank processing is incorporated by using the conjugate gradient (CG) algorithm for reduced complexity implementation. The CG algorithm leads to a best low-rank representation of the GSC blocking matrix via an iterative procedure, which in turn gives a reduced-rank equalizer weight vector achieving the best compromise between ISI and CCI suppression. With the dominating interference successfully cancelled at each stage of OSIC, the number of iterations required for the convergence of the CG algorithm decreases accordingly for the desired signal. Computer simulations demonstrate that the proposed reduced-rank MIMO DFE can achieve nearly the same performance as the full-rank MIMO MMSE DFE with an effective rank much lower than the dimension of the signal-plus-interference subspace.
A space-time (ST) receiver is proposed for multiple access interference (MAI) and narrowband interference (NBI) suppression, and multipath diversity reception in wireless multi-carrier CDMA communications incorporating antenna arrays. The scheme involves three stages. First, an adaptive matched filter is attached to each finger at each antenna to combat the MAI. Second, an adaptive beamformer is constructed for each finger which provides effective reception of the signal of interest (SOI) and suppression of time-varying NBI. Finally, beamformer output data from different fingers are combined to capture the signal multipath components coherently. The proposed ST receiver is shown to perform reliably under strong interference, and outperform the ST MMSE receiver with pilot symbols aided channel estimation.
Chia-Hsing YANG Ming-Chun LEE Ta-Sung LEE Hsiu-Chi CHANG
Intelligent transportation systems (ITSs) have been extensively studied in recent years to improve the safety and efficiency of transportation. The use of a radar system to enable the ITSs monitor the environment is robust to weather conditions and is less invasive to user privacy. Moreover, equipping the roadside units (RSUs) with radar modules has been deemed an economical and efficient option for ITS operators. However, because the detection and tracking parameters can significantly influence the radar system performance and the best parameters for different scenarios are different, the selection of appropriate parameters for the radar systems is critical. In this study, we investigated radar parameter selection and consequently proposes a parameter selection approach capable of automatically choosing the appropriate detection and tracking parameters for radar systems. The experimental results indicate that the proposed method realizes appropriate selection of parameters, thereby significantly improving the detection and tracking performance of radar systems.
Kuan-Cheng YEH Chia-Hsing YANG Ming-Chun LEE Ta-Sung LEE Hsiang-Hsuan HUNG
To enhance safety and efficiency in the traffic environment, developing intelligent transportation systems (ITSs) is of paramount importance. In ITSs, roadside units (RSUs) are critical components that enable the environment awareness and connectivity via using radar sensing and communications. In this paper, we focus on RSUs with multiple radar systems. Specifically, we propose a parameter selection method of multiple radar systems to enhance the overall sensing performance. Furthermore, since different radars provide different sensing and tracking results, to benefit from multiple radars, we propose fusion algorithms to integrate the tracking results of different radars. We use two commercial frequency-modulated continuous wave (FMCW) radars to conduct experiments at Hsinchu city in Taiwan. The experimental results validate that our proposed approaches can improve the overall sensing performance.