The search functionality is under construction.

Author Search Result

[Author] Michitaka KAMEYAMA(65hit)

61-65hit(65hit)

  • Prospects of Multiple-Valued VLSI Processors

    Takahiro HANYU  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    383-392

    Rapid advances in integrated circuit technology based on binary logic have made possible the fabrication of digital circuits or digital VLSI systems with not only a very large number of devices on a single chip or wafer, but also high-speed processing capability. However, the advance of processing speeds and improvement in cost/performance ratio based on conventional binary logic will not always continue unabated in submicron geometry. Submicron integrated circuits can handle multiple-valued signals at high speed rather than binary signals, especially at data communication level because of the reduced interconnections. The use of nonbinary logic or discrete-analog signal processing will not be out of the question if the multiple-valued hardware algorithms are developed for fast parallel operations. Moreover, in VLSI or ULSI processors the delay time due to global communications between functional modules or chips instead of each functional module itself is the most important factors to determine the total performance. Locally computable hardware implementation and new parallel hardware algorithms natural to multiple-valued data representation and circuit technologies are the key properties to develop VLSI processors in submicron geometry. As a result, multiple-valued VLSI processors make it possible to improve the effective chip density together with the processing speed significantly. In this paper, we summarize several potential advantages of multiple-valued VLSI processors in submicron geometry due to great reduction of interconnection and due to the suitability to locally computable hardware implementation, and demonstrate that some examples of special-purpose multiple-valued VLSI processors, which are a signed-digit arithmetic VLSI processor, a residue arithmetic VLSI processor and a matching VLSI processor can achieve higher performance for real-world computing system.

  • Multiple-Valued VLSI Image Processor Based on Residue Arithmetic and Its Evaluation

    Makoto HONDA  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    455-462

    The demand for high-speed image processing is obvious in many real-world computations such as robot vision. Not only high throughput but also small latency becomes an important factor of the performance, because of the requirement of frequent visual feedback. In this paper, a high-performance VLSI image processor based on the multiple-valued residue arithmetic circuit is proposed for such applications. Parallelism is hierarchically used to realize the high-performance VLSI image processor. First, spatially parallel architecture that is different from pipeline architecture is considered to reduce the latency. Secondly, residue number arithmetic is introduced. In the residue number arithmetic, data communication between the mod mi arithmetic units is not necessary, so that multiple mod mi arithmetic units can be completely separated to different chips. Therefore, a number of mod mi multiply adders can be implemented on a single VLSI chip based on the modulus-slice concept. Finally, each mod mi arithmetic unit can be effectively implemented in parallel structure using the concept of a pseudoprimitive root and the multiple-valued current-mode circuit technology. Thus, it is made clear that the throughout use of parallelism makes the latency 1/3 in comparison with the ordinary binary implementation.

  • Architecture of a Parallel Multiple-Valued Arithmetic VLSI Processor Using Adder-Based Processing Elements

    Katsuhiko SHIMABUKURO  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    463-471

    An adder-based arithmetic VLSI processor using the SD number system is proposed for the applications of real-time computation such as intelligent robot system. Especially in the intelligent robot control system, not only high throughput but also small latency is a very important subject to make quick response for the sensor feedback situation, because the next input sample is obtained only after the robot actually moves. It is essential in the VLSI architecture for the intelligent robot system to make the latency as small as possible. The use of parallelism is an effective approach to reduce the latency. To meet the requirement, an architecture of a new multiple-valued arithmetic VLSI processor is developed. In the processor, addition and subtraction are performed by using the single adderbased processing element (PE). More complex basic arithmetic operations such as multiplication and division are performed by the appropriate data communications between the adder-based PEs with preserving their parallelism. In the proposed architecture, fine-grain parallel processing at the adder-based PE level is realized, and all the PEs can be fully utilized for any parallel arithmetic operations according to adder-based data dependency graph. As a result, the processing speed will be greatly increased in comparison with the conventional parallel processors having the different kinds of the arithmetic PEs such as an adder, a multiplier and a divider. To realize the arithmetic VLSI processor using the adder-based PEs, we introduce the signed-digit (SD) number system for the parallel arithmetic operations because the SD arithmetic has the advantage of modularity as well as parallelism. The multiple-valued bidirectional currentmode technology is also used for the implementation of the compact and high-speed adder-based PE, and the reduction of the number of the interconnections. It is demonstrated that these advantges of the multiple-valued technology are fully used for the implementation of the arithmetic VLSI processor. As a result, the latency of the proposed multiple-valued processor is reduced to 25% that of the binary processor integrated in the same chip size.

  • Evaluation of an FPGA-Based Heterogeneous Multicore Platform with SIMD/MIMD Custom Accelerators

    Yasuhiro TAKEI  Hasitha Muthumala WAIDYASOORIYA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2576-2586

    Heterogeneous multi-core architectures with CPUs and accelerators attract many attentions since they can achieve power-efficient computing in various areas from low-power embedded processing to high-performance computing. Since the optimal architecture is different from application to application, finding the most suitable accelerator is very important. In this paper, we propose an FPGA-based heterogeneous multi-core platform with custom accelerators for power-efficient computing. Using the proposed platform, we evaluate several applications and accelerators to identify many key requirements of the applications and properties of the accelerators. Such an evaluation is very important to select and optimize the most suitable accelerator according to the requirements of an application to achieve the best performance.

  • Design of a Multiple-Valued VLSI Processor for Digital Control

    Katsuhiko SHIMABUKURO  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER-Computer Hardware and Design

      Vol:
    E75-D No:5
      Page(s):
    709-717

    It is well known that the multiple-valued signed-digit (SD) arithmetic circuits have the attractive features of compactness and high-speed operation. However, both of these features have yet to be utilized fully. In this paper, we consider the application of a parallel-structure-based VLSI processor. A high-performance parallel-structure-based multiple-valued VLSI processor using the radix-2 SD number system is proposed. Its compactness makes the parallelism high under chip size limitations in comparison with the ordinary binary arithmetic circuits. Moreover, the speed of the single arithmetic module is very high in the SD arithmetic circuits, so that we can take advantage of the high-speed operation in the parallel-structure-based VLSI processor chip. The multiple-valued bidirectional current-mode technology is used not only in high-speed small sized arithmetic circuits, but also in reducing the number of connections in the parallel-structure-based VLSI processor. The proposed processor is specially developed for real-time digital control, where the performance is evaluated by delay time. Performance estimation using SPICE simulators shows that the delay time of proposed processor for matrix operations such as matrix multiplication is greatly reduced in comparison with a conventional binary processor.

61-65hit(65hit)