1-2hit |
Ming-Tuo ZHOU Awnashilal B. SHARMA Jian-Guo ZHANG Forhadul PARVEZ
A simple configuration for millimeter-wave fiber-wireless transmission, with remote local-oscillator (LO) delivery from the central office, both for the uplink and for the downlink, and a simple, cost-effective, base-station solution is proposed. Under the assumption of using commercially available components and a conventional single-mode fiber (with dispersion of 17 ps/nm/km at 1.55 µm), our numerical results show that, with a laser linewidth of 150 MHz, a laser power of 0 dBm and an optical gain of only 6 dB, it is possible to transmit, without repeaters, data rates of 622 Mbit/s across about 18 km at a bit-error-rate of 10-9. By increasing the optical gain to 24 dB, the link length can be increased to approximately 67 km for a laser linewidth of 75 MHz and to 78 km for a laser linewidth 1 MHz.
A channel-hopping medium access control (MAC) protocol is proposed for cognitive operation of the 802.16d Mesh networks. The proposal mainly includes a channel-hopping algorithm of channel accessing for control messages transmission and reception, an algorithm of bandwidth allocation in cognitive operation, a cognition-enhanced frame structure, a method of spectrum sensing results reporting, and a method of incumbent detection. Compared to other studies, the channel-hopping algorithm for control messages transmission and reception requires no extra common control channels and operation of mesh clusters, thus it is more cost-effective and simpler in operation. Analysis shows that with this algorithm a Mesh node with any available channels has fair opportunities to receive beacon and network configuration information. Numerical results show that, compared to the mesh cluster method, the proposed channel-hopping algorithm has gain, e.g., as high as 3 times, in getting the data scheduling control messages received by one-hop neighbors, thus it has advantages in minimizing bandwidth allocation collisions. The algorithm of bandwidth allocation details the three-way handshake framework for bandwidth application and grant that is defined in 802.16d Mesh standard, and it enables dynamical resource allocations in cognitive operations. The feasibility of the channel-hopping MAC protocol is confirmed by simulations. And simulation results show that with the parameters set, a normalized aggregate saturation throughput of about 70% is achievable.