The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Miwako KANAMORI(2hit)

1-2hit
  • Power-Minimum Frequency/Voltage Cooperative Management Method for VLSI Processor in Leakage-Dominant Technology Era

    Kentaro KAWAKAMI  Miwako KANAMORI  Yasuhiro MORITA  Jun TAKEMURA  Masayuki MIYAMA  Masahiko YOSHIMOTO  

     
    PAPER-Low Power Methodology

      Vol:
    E88-A No:12
      Page(s):
    3290-3297

    To achieve both of a high peak performance and low average power characteristics, frequency-voltage cooperative control processor has been proposed. The processor schedules its operating frequency according to the required computation power. Its operating voltage or body bias voltage is adequately modulated simultaneously to effectively cut down either switching current or leakage current, and it results in reduction of total power dissipation of the processor. Since a frequency-voltage cooperative control processor has two or more operating frequencies, there are countless scheduling methods exist to realize a certain number of cycles by deadline time. This proposition is frequently appears in a hard real-time system. This paper proves two important theorems, which give the power-minimum frequency scheduling method for any types of frequency-voltage cooperative control processor, such as Vdd-control type, Vth-control type and Vdd-Vth-control type processors.

  • A Feed-Forward Dynamic Voltage Control Algorithm for Low Power MPEG4 on Multi-Regulated Voltage CPU

    Hideo OHIRA  Kentaro KAWAKAMI  Miwako KANAMORI  Yasuhiro MORITA  Masayuki MIYAMA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    457-465

    In this paper, we describe a feed-forward dynamic voltage/clock-frequency control method enabling low power MPEG4 on multi-regulated voltage CPU with combining the characteristics of the CPU and the video encoding processing. This method theoretically achieves minimum low power consumption which is close to the hardware-level power consumption. Required processing performance for MPEG4 visual encoding totally depends on the activity of the sequence, and high motion sequence requires high performance and low motion sequence requires low performance. If required performance is predictable, lower power consumption can be achieved with controlling the adequate voltage and clock-frequency dynamically at every frame. The proposed method in this paper is predicting the required processing performance of a future frame using our unique feed-forward analysis method and controlling a voltage and frequency dynamically at every frame along with the forward analysis value. The simulation results indicate that the proposed feed-forward analysis method adequately predicts the required processing performance of every future frame, and enables to minimize power consumption on software basis MPEG4 visual encoding processing. In the case that CPU has Frequency-Voltage characteristics of 1.8 V @400 MHz to 1.0 V @189 MHz, the proposed method reduces the power consumption approximately 37% at high motion sequences or 65% at low motion sequences comparing with the conventional software video encoding method.