1-4hit |
Xiaojuan LIAO Miyuki KOSHIMURA Hiroshi FUJITA Ryuzo HASEGAWA
Coalition Structure Generation (CSG) means partitioning agents into exhaustive and disjoint coalitions so that the sum of values of all the coalitions is maximized. Solving this problem could be facilitated by employing some compact representation schemes, such as marginal contribution network (MC-net). In MC-net, the CSG problem is represented by a set of rules where each rule is associated with a real-valued weights, and the goal is to maximize the sum of weights of rules under some constraints. This naturally leads to a combinatorial optimization problem that could be solved with weighted partial MaxSAT (WPM). In general, WPM deals with only positive weights while the weights involved in a CSG problem could be either positive or negative. With this in mind, in this paper, we propose an extension of WPM to handle negative weights and take advantage of the extended WPM to solve the MC-net-based CSG problem. Specifically, we encode the relations between each pair of agents and reform the MC-net as a set of Boolean formulas. Thus, the CSG problem is encoded as an optimization problem for WPM solvers. Furthermore, we apply this agent relation-based WPM with minor revision to solve the extended CSG problem where the value of a coalition is affected by the formation of other coalitions, a coalition known as externality. Experiments demonstrate that, compared to the previous encoding, our proposed method speeds up the process of solving the CSG problem significantly, as it generates fewer number of Boolean variables and clauses that need to be examined by WPM solver.
Miyuki KOSHIMURA Hidetomo NABESHIMA Hiroshi FUJITA Ryuzo HASEGAWA
This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.
Xiaojuan LIAO Hui ZHANG Miyuki KOSHIMURA
Cold boot attack is a side channel attack that recovers data from memory, which persists for a short period after power is lost. In the course of this attack, the memory gradually degrades over time and only a corrupted version of the data may be available to the attacker. Recently, great efforts have been made to reconstruct the original data from a corrupted version of AES key schedules, based on the assumption that all bits in the charged states tend to decay to the ground states while no bit in the ground state ever inverts. However, in practice, there is a small number of bits flipping in the opposite direction, called reverse flipping errors. In this paper, motivated by the latest work that formulates the relations of AES key bits as a Boolean Satisfiability problem, we move one step further by taking the reverse flipping errors into consideration and employing off-the-shelf SAT and MaxSAT solvers to accomplish the recovery of AES-128 key schedules from decayed memory images. Experimental results show that, in the presence of reverse flipping errors, the MaxSAT approach enables reliable recovery of key schedules with significantly less time, compared with the SAT approach that relies on brute force search to find out the target errors. Moreover, in order to further enhance the efficiency of key recovery, we simplify the original problem by removing variables and formulas that have relatively weak relations to the whole key schedule. Experimental results demonstrate that the improved MaxSAT approach reduces the scale of the problem and recover AES key schedules more efficiently when the decay factor is relatively large.
Xiaojuan LIAO Miyuki KOSHIMURA Hiroshi FUJITA Ryuzo HASEGAWA
Coalition Structure Generation (CSG) is a main research issue in the domain of coalition games. A majority of existing works assume that the value of a coalition is independent of others in the coalition structure. Recently, there has been interest in a more realistic settings, where the value of a coalition is affected by the formation of other coalitions. This effect is known as externality. The focus of this paper is to make use of Maximum Satisfiability (MaxSAT) to solve the CSG problem where externalities may exist. In order to reduce the exponentially growing number of possible solutions in the CSG problem, we follow the previous works by representing the CSG problem as sets of rules in MC-nets (without externalities) and embedded MC-nets (with externalities). Specifically, enlightened by the previous MC-net-based algorithms exploiting the constraints among rule relations to solve the CSG problem, we encode such constraints into weighted partial MaxSAT (WPM) formulas. Experimental results demonstrate that an off-the-shelf MaxSAT solver achieves significant improvements compared to the previous algorithm for the same set of problem instances.