The search functionality is under construction.

Author Search Result

[Author] Ryuzo HASEGAWA(3hit)

1-3hit
  • Extending MaxSAT to Solve the Coalition Structure Generation Problem with Externalities Based on Agent Relations

    Xiaojuan LIAO  Miyuki KOSHIMURA  Hiroshi FUJITA  Ryuzo HASEGAWA  

     
    PAPER-Information Network

      Vol:
    E97-D No:7
      Page(s):
    1812-1821

    Coalition Structure Generation (CSG) means partitioning agents into exhaustive and disjoint coalitions so that the sum of values of all the coalitions is maximized. Solving this problem could be facilitated by employing some compact representation schemes, such as marginal contribution network (MC-net). In MC-net, the CSG problem is represented by a set of rules where each rule is associated with a real-valued weights, and the goal is to maximize the sum of weights of rules under some constraints. This naturally leads to a combinatorial optimization problem that could be solved with weighted partial MaxSAT (WPM). In general, WPM deals with only positive weights while the weights involved in a CSG problem could be either positive or negative. With this in mind, in this paper, we propose an extension of WPM to handle negative weights and take advantage of the extended WPM to solve the MC-net-based CSG problem. Specifically, we encode the relations between each pair of agents and reform the MC-net as a set of Boolean formulas. Thus, the CSG problem is encoded as an optimization problem for WPM solvers. Furthermore, we apply this agent relation-based WPM with minor revision to solve the extended CSG problem where the value of a coalition is affected by the formation of other coalitions, a coalition known as externality. Experiments demonstrate that, compared to the previous encoding, our proposed method speeds up the process of solving the CSG problem significantly, as it generates fewer number of Boolean variables and clauses that need to be examined by WPM solver.

  • Solving Open Job-Shop Scheduling Problems by SAT Encoding

    Miyuki KOSHIMURA  Hidetomo NABESHIMA  Hiroshi FUJITA  Ryuzo HASEGAWA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:8
      Page(s):
    2316-2318

    This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.

  • MaxSAT Encoding for MC-Net-Based Coalition Structure Generation Problem with Externalities

    Xiaojuan LIAO  Miyuki KOSHIMURA  Hiroshi FUJITA  Ryuzo HASEGAWA  

     
    PAPER-Information Network

      Vol:
    E97-D No:7
      Page(s):
    1781-1789

    Coalition Structure Generation (CSG) is a main research issue in the domain of coalition games. A majority of existing works assume that the value of a coalition is independent of others in the coalition structure. Recently, there has been interest in a more realistic settings, where the value of a coalition is affected by the formation of other coalitions. This effect is known as externality. The focus of this paper is to make use of Maximum Satisfiability (MaxSAT) to solve the CSG problem where externalities may exist. In order to reduce the exponentially growing number of possible solutions in the CSG problem, we follow the previous works by representing the CSG problem as sets of rules in MC-nets (without externalities) and embedded MC-nets (with externalities). Specifically, enlightened by the previous MC-net-based algorithms exploiting the constraints among rule relations to solve the CSG problem, we encode such constraints into weighted partial MaxSAT (WPM) formulas. Experimental results demonstrate that an off-the-shelf MaxSAT solver achieves significant improvements compared to the previous algorithm for the same set of problem instances.