The search functionality is under construction.

Author Search Result

[Author] Muhammad SHAFIQ(5hit)

1-5hit
  • FIR Filters Based Adaptive Tracking

    Muhammad SHAFIQ  

     
    PAPER-Systems and Control

      Vol:
    E87-A No:3
      Page(s):
    708-715

    This paper presents a method to compensate the effect of non-cancellable zeros of the plant on output by incorporating finite impulse response (FIR) filter in the feed-forward path. This FIR filter is designed using the approximate inverse system of the non-cancellable part of numerator polynomial of the plant. The proposed controller guarantees boundedness of all signals from the reference input to the plant output. Computer simulation and real-time control experiment results are given to demonstrate the effectiveness of the proposed method.

  • Adaptive Inverse Control: Internal Model Control Structure

    Muhammad SHAFIQ  

     
    LETTER-Systems and Control

      Vol:
    E87-A No:8
      Page(s):
    2164-2167

    A simple adaptive internal model control structure is designed and tested on the real-time temperature control of a process. The design procedure remains same for both minimum and non-minimum phase systems. The effect of the process zeros on the output is compensated by using adaptive finite impulse response filters. This guarantees the stability of the closed-loop.

  • A New Method for Self-Tuning Control of Nonminimum Phase Continuous-Time Systems Based on Pole-Zero Placement

    Muhammad SHAFIQ  Jianming LU  Takashi YAHAGI  

     
    PAPER-Systems and Control

      Vol:
    E79-A No:4
      Page(s):
    578-584

    We present a new method for the self-tuning control (STC) of nonminimum phase continuous-time systems based on the pole-zero placement. The long division method is used to decompose a polynomial into a stable and unstable polynomials. It is also shown that the effect of unstable zeros on the magnitude of the desired output can be cancelled. Finally, the results of computer simulation are presented to illustrate the effectiveness of the proposed method.

  • On Self-Tuning Control of Nonminimum Phase Discrete-Time Stochastic Systems

    Muhammad SHAFIQ  Jianming LU  Takashi YAHAGI  

     
    PAPER-Systems and Control

      Vol:
    E79-A No:12
      Page(s):
    2176-2184

    This paper presents a new method for the selftuning control of nonminimum phase discrete-time stochastic systems using approximate inverse systems obtained from the leastsquares approximation. Using this approximate inverse system the gain response of the system can be made approximately unit and phase response exactly zero. We show how unstable polezero cancellations can be avoided. This approximate inverse system can be used in the same manner for both minimum and nonminimum phase systems. Moreover, the degrees of the controller polynomials do not depend on the approximate inverse system. We just need an extra FIR filter in the feedforward path.

  • A Method for Adaptive Control of Nonminimum Phase Continuous-Time Systems Based on Pole-Zero Placement

    Jianming LU  Muhammad SHAFIQ  Takashi YAHAGI  

     
    PAPER-Systems and Control

      Vol:
    E80-A No:6
      Page(s):
    1109-1115

    We present a new method for the adaptive control of nonminimum phase continuous-time systems based on the pole-zero placement using approximate inverse systems to avoid the unstable pole-zero cancellations. Using this method effect of the unstable zeros cab be compensated approximately. We show how unstable pole-zoro cancellations can be avoided, and that this method has the advantage of being able to determine an approximate inverse system independently of the plant zeros. The proposed scheme uses only the available input and output data and the stability using approximate inverse systems is analyzed. Finally, the results of computer simulation are presented to illustrate the effectiveness of the proposed method.